No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 4 answers

Ishita Mittal 6 years, 3 months ago

But I can't understand ncert

Vinay Gautam 6 years, 3 months ago

I cant undrstnd ncert well

Shubham Lodhi 6 years, 3 months ago

you can get marks by giving answers

Vishnukant Kumar 6 years, 3 months ago

It's so normal question, don't be frustrated.Read ncert books and practice the excercise.you will really get much marks..
  • 2 answers

Ravi Ravi 6 years, 3 months ago

Rajasthan ka khetari area etc.

Sia ? 6 years, 3 months ago

मध्यप्रदेश, राजस्थान और झारखंड ।

  • 1 answers

Nitish Jha 6 years, 3 months ago

Use by parts
  • 1 answers

Sia ? 6 years, 3 months ago

1936

  • 0 answers
  • 2 answers

Yashika Bansal 6 years, 1 month ago

Meera bai ke guru raidas rhe jo ek charmkar the

Sakshi Tadiyal 6 years, 3 months ago

Raidas
  • 0 answers
  • 1 answers

Shruti Rajput 6 years, 1 month ago

Sufi saint Khwaja Muin-ud-Din Chishti introduced the Chishti silsila in India. He arrived in India in AD 1161 with Mahmud of Ghazni and found a base in Ajmer till AD 1236. His tomb or dargah is considered to be an important pilgrimage centre and every year a festival calledUrsis held there. The tomb is still visited by many devotees and followers. Other saints and followers of Khwaja Muin-ud-Din were Bakhtiyar Kaki and his discipleFariduddin Ganj-i-Shakar. In Delhi there were Nizamuddin Auliya and ShaikhNasiruddin Mahmud, known as ‘Chirag-i-Delhi’. Sheikh Salim Chishti of Ajmer was another popular Sufi saint.
  • 1 answers

Mansi Sharma 6 years, 3 months ago

First name the ligand & then the central metal atom. Pls go through NCERT for more information
  • 3 answers

Lalan Kumar 6 years, 3 months ago

Uper +a-a laker Sina - b ka formula laga dena

Utkarsh Goel 6 years, 3 months ago

Check the link

Utkarsh Goel 6 years, 3 months ago

https://embibe-ask.s3.amazonaws.com/images/production/2017-09-28_16-44-22_s2.PNG
  • 0 answers
  • 1 answers

Nishu Goyal 6 years, 3 months ago

Coping a specific gene for purpose by PCR
  • 1 answers

Asha Ram 6 years, 3 months ago

F
  • 1 answers

Sia ? 6 years, 3 months ago

 


{tex}v = \frac{1}{3}\pi {r^2}h{/tex} {tex}\left[ {{r^2} = \sqrt {{R^2} - {x^2}} } \right]{/tex}
{tex}V = \frac{1}{2}\pi .\left( {{R^2} - {x^2}} \right).\left( {R + x} \right){/tex}
{tex}\frac{{dy}}{{dx}} = \frac{1}{3}\pi \left[ {\left( {{R^2} - {x^2}} \right)\left( 1 \right) + \left( {R + x} \right)( - 2x)} \right]{/tex}
{tex} = \frac{1}{3}\pi \left[ {\left( {R + x} \right)\left( {R - x} \right) - 2x\left( {R + x} \right)} \right]{/tex}
{tex} = \frac{1}{3}\pi \left( {R + x} \right)\left[ {R - x - 2x} \right]{/tex}
{tex} = \frac{1}{3}\pi \left( {R + x} \right)(R - 3x){/tex}....(1)
Put {tex}\frac{{dv}}{{dr}} = 0{/tex}
R = - x (neglecting)
R = 3x
{tex}\frac{R}{3} = x{/tex}
On again differentiating equation (1)
{tex}\frac{{{d^2}v}}{{d{x^2}}} = \frac{1}{3}\pi \left[ {(R + x)( - 3) + (R - 3x)(1)} \right]{/tex}
={tex}{\left. {\frac{{{d^2}v}}{{d{x^2}}}} \right]_{x = \frac{R}{3}}} = \frac{1}{3}\pi \left[ {\left( {R + \frac{R}{3}} \right)( - 3) + \left( {R - 3.\frac{R}{3}} \right)} \right]{/tex}
{tex}\frac{1}{3}\pi \left[ {\frac{{4R}}{3} \times - 3 + 0} \right]{/tex}
{tex} = \frac{{ - 1}}{3}\pi 4R{/tex}
{tex}\frac{{{d^2}v}}{{d{x^2}}} < 0{/tex} Hence maximum
Now {tex}v = \frac{1}{3}\pi \left[ {\left( {{R^2} - {x^2}} \right)\left( {R + x} \right)} \right]{/tex}{tex}\left[ {x = \frac{R}{3}} \right]{/tex}
{tex}v = \frac{1}{3}\pi \left[ {\left( {{R^2} - {{\left( {\frac{R}{3}} \right)}^2}} \right)\left( {R + \left( {\frac{R}{3}} \right)} \right)} \right]{/tex}
{tex} = \frac{1}{3}\pi \left[ {\frac{{8{R^2}}}{9} \times \frac{{4R}}{3}} \right]{/tex}
{tex}v = \frac{8}{{27}}\left( {\frac{4}{3}} \right)\pi {R^3}{/tex}
{tex}v = \frac{8}{{27}}{/tex} Volume of sphere
Volume of cone {tex} = \frac{8}{{27}}{/tex} of volume of sphere.

 

 

  • 1 answers

Chesta Gupta 6 years, 3 months ago

Both record revenue receipt and expenditure they not recorded capital receipt and expenditure
  • 3 answers

Kawalpreet Kaur 6 years, 3 months ago

Bcz there is no resistance during the flow of direct current that's why it can pass easily

Khuskaran Sidhu 6 years, 3 months ago

Becoz XL = 0,so resistance is 0 ,current will easily flow sans any opposition

Muskan Bamel 6 years, 3 months ago

For dc Frequency= 0 XL( inductive reactance)=0 i.e..,dc easily pass through inductor
  • 1 answers

Sia ? 6 years, 3 months ago

Discharge of a contract means termination of a contract. It is the act of making a contract or agreement null. A discharged contract refers to contract that is fully performed. Discharge may take place by: Performance of the contract.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App