No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 5 months ago

Financial accounting is a specialized branch of accounting that keeps track of a company's financial transactions.
The financial accounting function is responsible for periodically reporting pecuniary information to business owners.
  • 0 answers
  • 0 answers
  • 2 answers

Maninderjeet Singh 6 years, 5 months ago

It states that energy can neither be created nor be destroyed but it can converted from one form to another

Sia ? 6 years, 5 months ago

The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity can neither be added nor be removed.
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Given Percentage of C= 40.687% , Percentage of H = 5.085%.

Therefore, Percentage of O = 100 - (40.687+5.085) = 54.228%.
Step I:  To calculate the empirical formula of the compound.

<th scope="col">Element</th> <th scope="col">Symbol</th> <th scope="col">Percentage of element</th> <th scope="col">Moles of the element 
Carbon C 40.687 {tex}\frac { 40.687 } { 12 } = 3.390{/tex} {tex}\frac { 3.390 } { 3.389 } = 1{/tex} 2
Hydrogen H 5.085 {tex}\frac { 5.0885 } { 1 } = 5.085{/tex} {tex}\frac { 5.085 } { 3.389 } = 1.5{/tex} 3
Oxygen O 16 {tex}\frac { 54.228 } { 16 } = 3.389{/tex} {tex}\frac { 3.389 } { 3.389 } = 1{/tex} 2

Since, ration of C : H : O = 2 :3 :2.

{tex}\therefore{/tex} An empirical formula is C2H3O2.
Step II:  The empirical formula of the compound = C2H3O2.
{tex}\therefore{/tex} Empirical formula mass = 2 {tex}\times{/tex} C +3 {tex}\times{/tex} H + 2{tex}\times{/tex} O =  {tex}( 2 \times 12 ) + ( 3 \times 1 ) + ( 2 \times 16 ) = 59{/tex}
Step III: To calculate the molecular mass of the salt
The vapour density of the compound = 59 (Given)
Using the relation between vapour density and molecular mass.

Therefore, Molecular mass of compound = 2 {tex}\times{/tex} vapour density of compound = 2 {tex}\times{/tex} 59 = 118
Step IV:  The value of n = {tex}\frac { \text { molecular mass } } { \text { empirical formula mass } } = \frac { 118 } { 59 } = 2{/tex}
Step V:  Calculation of  the molecular formula of the salt,
Molecular formula = n {tex}\times{/tex} empirical formula = {tex}2 \times \mathrm { C } _ { 2 } \mathrm { H } _ { 3 } \mathrm { O } _ { 2 } = \mathrm { C } _ { 4 } \mathrm { H } _ { 6 } \mathrm { O } _ { 4 }{/tex}
Thus, the molecular formula is C4H6O4.

  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

{tex}cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex}{tex} + cos^4{/tex} {tex}\frac { 5 \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 7 \pi } { 8 }{/tex}
{tex}= cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\left( \frac { \pi } { 2 } + \frac { \pi } { 8 } \right){/tex} {tex}+ cos^4{/tex} {tex}\left( \frac { \pi } { 2 } + \frac { 3 \pi } { 8 } \right){/tex}
{tex}= cos^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ cos^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} {tex}+ sin^4{/tex} {tex}\frac { \pi } { 8 }{/tex} {tex}+ sin^4{/tex} {tex}\frac { 3 \pi } { 8 }{/tex} [{tex}\because{/tex} cos {tex}\left( \frac { \pi } { 2 } + \theta \right){/tex} = - sin {tex}\theta{/tex}]
= (cos4 {tex}\frac { \pi } { 8 }{/tex} + sin4 {tex}\frac { \pi } { 8 }{/tex}) + (cos4 {tex}\frac { 3 \pi } { 8 }{/tex} + sin4 {tex}\frac { 3 \pi } { 8 }{/tex})
= (cos4 {tex}\frac { \pi } { 8 }{/tex} + sin4 {tex}\frac { \pi } { 8 }{/tex} + 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex} - 2 sin2 {tex}\frac { \pi } { 8 }{/tex} cos2 {tex}\frac { \pi } { 8 }{/tex}) + (cos{tex}\frac { 3 \pi } { 8 }{/tex} + sin4 {tex}\frac { 3 \pi } { 8 }{/tex} + 2 sin{tex}\frac { 3 \pi } { 8 }{/tex} cos2 {tex}\frac { 3 \pi } { 8 }{/tex} - 2 sin{tex}\frac { 3 \pi } { 8 }{/tex} cos{tex}\frac { 3 \pi } { 8 }{/tex})
= (cos{tex}\frac { \pi } { 8 }{/tex} + sin{tex}\frac { \pi } { 8 }{/tex})- 2 sin{tex}\frac { \pi } { 8 }{/tex} cos{tex}\frac { \pi } { 8 }{/tex} + (cos{tex}\frac { 3 \pi } { 8 }{/tex} + sin{tex}\frac { 3 \pi } { 8 }{/tex})2 - 2 sin{tex}\frac { 3 \pi } { 8 }{/tex} cos{tex}\frac { 3 \pi } { 8 }{/tex}
[{tex}\because{/tex} {tex}a^4 + b^4 = (a^2 + b^2) - 2a^2 b^2{/tex}]
= 1 - {tex}\frac { 1 } { 2 }{/tex} (2 sin {tex}\frac { \pi } { 8 }{/tex} cos {tex}\frac { \pi } { 8 }{/tex})+ 1 - {tex}\frac { 1 } { 2 }{/tex} (2 sin {tex}\frac { 3 \pi } { 8 }{/tex} cos {tex}\frac { 3 \pi } { 8 }{/tex})2
[{tex}\because{/tex} {tex}sin^2\theta  + cos^2\theta  = 1{/tex}]
= 2 - {tex}\frac { 1 } { 2 }{/tex} (sin 2 {tex}\times \frac { \pi } { 8 } ) ^ { 2 }{/tex} - {tex}\frac { 1 } { 2 }{/tex} (sin 2 {tex}\times \frac { 3 \pi } { 8 }{/tex})2  [{tex}\because{/tex} sin 2x = 2 sinx cosx]
= 2 - {tex}\frac { 1 } { 2 }{/tex} sin2 {tex}\frac { \pi } { 4 }{/tex} - {tex}\frac { 1 } { 2 }{/tex} sin2 {tex}\frac { 3 \pi } { 4 }{/tex}
= 2 - {tex}\frac { 1 } { 2 }{/tex} {tex}\times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } - \frac { 1 } { 2 } \times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 }{/tex}
[{tex}\because{/tex} sin {tex}\frac { 3 \pi } { 4 }{/tex} = sin {tex}\left( \pi - \frac { \pi } { 4 } \right){/tex} = sin {tex}\frac { \pi } { 4 }{/tex}= {tex}\frac1{\sqrt2}{/tex}]
= 2 - {tex}\frac { 1 } { 2 } \times \frac { 1 } { 2 } - \frac { 1 } { 2 } \times \frac { 1 } { 2 }{/tex}
= 2 - {tex}\frac { 1 } { 4 } - \frac { 1 } { 4 }{/tex} = 2 - {tex}\frac { 1 } { 2 } = \frac { 3 } { 2 }{/tex}​​​​

  • 1 answers

Sia ? 6 years, 5 months ago

The public sector is the part of the economy composed of both public services and public enterprises.
  • 1 answers

Sia ? 6 years, 5 months ago

The private sector is the part of the economy, sometimes referred to as the citizen sector, which is owned by private individuals or groups, usually as a means of enterprise for profit, rather than being owned by the State.
  • 1 answers

Sia ? 6 years, 5 months ago

Solid objects will deform when forces are applied on them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.

  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Yes, it is present in the syllabus.

  • 1 answers

Sia ? 6 years, 5 months ago

Gravitational acceleration is 9.81 m/s². By using the conversion 1 m = 100 cm, we can find it in CGS. This gives us 981 cm/s².

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App