## myCBSEguide App

CBSE, NCERT, JEE Main, NEET-UG, NDA, Exam Papers, Question Bank, NCERT Solutions, Exemplars, Revision Notes, Free Videos, MCQ Tests & more.

Install Now

**Factorisation class 8 Notes Mathematics** in PDF are available for free download in myCBSEguide mobile app. The best app for CBSE students now provides Factorisation class 8 Notes Mathematics latest chapter wise notes for quick preparation of CBSE exams and school-based annual examinations. Class 8 Mathematics notes on chapter 14 Factorisation Mathematics are also available for download in CBSE Guide website.

**Class 8 Mathematics notes Chapter 14 Factorisation**

Download CBSE class 8th revision notes for chapter 14 Factorisation in PDF format for free. Download revision notes for Factorisation class 8 Notes and score high in exams. These are the Factorisation class 8 Notes prepared by team of expert teachers. The revision notes help you revise the whole chapter 14 in minutes. Revision notes in exam days is one of the best tips recommended by teachers during exam days.

**Download Revision Notes as PDF**

**CBSE Class 8 Revision Notes Maths Factorisation**

**Factorisation:**Representation of an algebraic expression as the product of two or more expressions is called factorization. Each such expression is called a factor of the given algebraic expression.- When we factorise an expression, we write it as a product of factors. These factors may be numbers, algebraic variables or algebraic expressions.
- An irreducible factor is a factor which cannot be expressed further as a product of factors.
- A systematic way of factorising an expression is the common factor method. It consists of three steps:

(i) Write each term of the expression as a product of irreducible factors

(ii) Look for and separate the common factors and

(iii) Combine the remaining factors in each term in accordance with the distributive law. - Sometimes, all the terms in a given expression do not have a common factor; but the terms can be grouped in such a way that all the terms in each group have a common factor. When we do this, there emerges a common factor across all the groups leading to the required factorisation of the expression. This is the method of regrouping.
- In factorisation by regrouping, we should remember that any regrouping (i.e., rearrangement) of the terms in the given expression may not lead to factorisation. We must observe the expression and come out with the desired regrouping by trial and error.
- A number of expressions to be factorised are of the form or can be put into the form: a
^{2}+ 2ab + b^{2}, a^{2}– 2ab + b^{2}, a^{2}– b^{2}and x2 + (a + b)x + ab. These expressions can be easily factorised using Identities I, II, III and IV

a^{2 }+ 2ab + b^{2}= (a + b)^{2}

a^{2 }– 2ab + b^{2}= (a – b)^{2}

a^{2}– b^{2}= (a + b) (a – b)

x2 + (a + b)x + ab = (x + a)(x + b) - In expressions which have factors of the type (x + a) (x + b), remember the numerical term gives ab. Its factors, a and b, should be so chosen that their sum, with signs taken care of, is the coefficient of x.
- We know that in the case of numbers, division is the inverse of multiplication. This idea is applicable also to the division of algebraic expressions.
- In the case of division of a polynomial by a monomial, we may carry out the division either by dividing each term of the polynomial by the monomial or by the common factor method.
- In the case of division of a polynomial by a polynomial, we cannot proceed by dividing each term in the dividend polynomial by the divisor polynomial. Instead, we factorise both the polynomials and cancel their common factors.
- In the case of divisions of algebraic expressions that we studied in this chapter, we have
- Dividend = Divisor × Quotient.
- In general, however, the relation is
- Dividend = Divisor × Quotient + Remainder
- Thus, we have considered in the present chapter only those divisions in which the remainder is zero.
- There are many errors students commonly make when solving algebra exercises. You should avoid making such errors.

## Factorisation class 8 Notes Mathematics

Factorisation class 8 Notes Mathematics. CBSE quick revision note for class-8 Mathematics, Chemistry, Math’s, Biology and other subject are very helpful to revise the whole syllabus during exam days. The revision notes covers all important formulas and concepts given in the chapter. Even if you wish to have an overview of a chapter, quick revision notes are here to do if for you. These notes will certainly save your time during stressful exam days.

To download Factorisation class 8 Notes Mathematics, sample paper for class 8 Mathematics, Social Science, Science, Mathematics; do check myCBSEguide app or website. myCBSEguide provides sample papers with solution, test papers for chapter-wise practice, NCERT solutions, NCERT Exemplar solutions, quick revision notes for ready reference, CBSE guess papers and CBSE important question papers. Sample Paper all are made available through **the best app for CBSE students** and myCBSEguide website.

- Rational Numbers class 8 Notes Mathematics
- Linear Equations in one Variable class 8 Notes Mathematics
- Understanding Quadrilaterals class 8 Notes Mathematics
- Practical Geometry class 8 Notes Mathematics
- Data Handling class 8 Notes Mathematics
- Squares and Square Roots class 8 Notes Mathematics
- Cubes and Cube Root class 8 Notes Mathematics
- Comparing Quantities class 8 Notes Mathematics
- Algebraic Expressions and Identities class 8 Notes Mathematics
- Visualising solid shapes class 8 Notes Mathematics
- Mensuration class 8 Notes Mathematics
- Exponents and Powers class 8 Notes Mathematics
- Direct and Inverse Proportions class 8 Notes Mathematics
- Factorisation class 8 Notes Mathematics
- Introduction to Graphs class 8 Notes Mathematics
- Playing with Numbers class 8 Notes Mathematics