No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Mukul Mittal 4 years, 4 months ago

What is style in a document?
  • 1 answers

Siddharth Roy 4 years, 4 months ago

Kya batana hai ismai
  • 1 answers

Aryadeep Singh Anchal 4 years, 3 months ago

No
  • 0 answers
  • 1 answers

Kishan R 4 years, 4 months ago

In computing, a firewall is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules. A firewall typically establishes a barrier between a trusted network and an untrusted network, such as the Internet.
  • 4 answers

Ritika Ritika. 4 years, 1 month ago

Hands,arms,neck,nose,legs,knee, shoulder,elbow.

Mokshgna Terli 4 years, 2 months ago

Hands,arms,neck,nose,legs,knee, shoulder,elbow.

Vijay Kumar 4 years, 3 months ago

Xbxhv

Chaitanya Sharma 4 years, 3 months ago

We have many sense organ like ear, leg arm ,knee , shoulder.. ?
  • 2 answers

Prerna Kumari 4 years, 4 months ago

Let angle(A) + angle (B) = x According to question X=angle(C) Now, X+X=180° Or X=180/2=90° Hence the third angle=90°=sum of other two angles

Prathamesh Kane 4 years, 4 months ago

Yes this called as pithagoras theoram which is applied in only right angled triangle That is a^2+b^2=c^2
  • 1 answers

Puneet Kumar 4 years, 4 months ago

Because it deals with our surroundings and give an idea of that what happened in past.
  • 4 answers

Manya Gupta 4 years, 3 months ago

Dinesh gend khoj rha tha

Krish Varmora 4 years, 3 months ago

My name is Krish varmora

Deepika Gautam 4 years, 4 months ago

दिनेश किरमिच की गेंद खोज रहा था ।

Aadarsh Shaw 4 years, 4 months ago

Dinesh gand khoj raha tha
  • 2 answers

Adarsh Kumar 4 years, 4 months ago

Isaac Newton’s calculus actually began in 1665 with his discovery of the general binomial series(1 + x)n = 1 + nx + n(n − 1)/2!∙x2 + n(n − 1)(n − 2)/3!∙x3 +⋯for arbitrary rational values of n. With this formula he was able to find infinite series for many algebraic functions (functions y of x that satisfy a polynomial equation p(x, y) = 0). For example,(1 + x)−1 = 1 − x + x2 − x3 + x4 − x5 +⋯ and1/Square root of√(1 − x2) = (1 + (−x2))−1/2 = 1 + 1/2∙x2 + 1∙3/2∙4∙x4+1∙3∙5/2∙4∙6∙x6 +⋯. In turn, this led Newton to infinite series for integrals of algebraic functions. For example, he obtained the logarithm by integrating the powers of x in the series for (1 + x)−1 one by one,log (1 + x) = x − x2/2 + x3/3 − x4/4 + x5/5 − x6/6 +⋯,and the inverse sine series by integrating the series for 1/Square root of√(1 − x2),sin−1(x) = x + 1/2∙x3/3 + 1∙3/2∙4∙x5/5 + 1∙3∙5/2∙4∙6∙x7/7 +⋯. Finally, Newton crowned this virtuoso performance by calculating the inverse series for x as a series in powers of y = log (x) and y = sin−1 (x), respectively, finding the exponential seriesx = 1 + y/1! + y2/2! + y3/3! + y4/4! +⋯and the sine seriesx = y − y3/3! + y5/5! − y7/7! +⋯. Note that the only differentiation and integration Newton needed were for powers of x, and the real work involved algebraic calculation with infinite series. Indeed, Newton saw calculus as the algebraic analogue of arithmetic with infinite decimals, and he wrote in his Tractatus de Methodis Serierum et Fluxionum (1671; “Treatise on the Method of Series and Fluxions”): Get a Britannica Premium subscription and gain access to exclusive content.Subscribe Now I am amazed that it has occurred to no one (if you except N. Mercator and his quadrature of the hyperbola) to fit the doctrine recently established for decimal numbers to variables, especially since the way is then open to more striking consequences. For since this doctrine in species has the same relationship to Algebra that the doctrine of decimal numbers has to common Arithmetic, its operations of Addition, Subtraction, Multiplication, Division and Root extraction may be easily learnt from the latter’s. For Newton, such computations were the epitome of calculus. They may be found in his De Methodis and the manuscript De Analysi per Aequationes Numero Terminorum Infinitas (1669; “On Analysis by Equations with an Infinite Number of Terms”), which he was stung into writing after his logarithmic series was rediscovered and published by Nicolaus Mercator. Newton never finished the De Methodis, and, despite the enthusiasm of the few whom he allowed to read De Analysi, he withheld it from publication until 1711. This, of course, only hurt him in his priority dispute with Gottfried Wilhelm Leibniz. John Colin Stillwell Learn More in these related Britannica articles:  Isaac Newton Isaac Newton, English physicist and mathematician, who was the culminating figure of the...…  binomial theorem Binomial theorem, statement that for any positive integer n, the nth power...…  Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz, German philosopher, mathematician, and political adviser, important...…  HISTORY AT YOUR FINGERTIPS Sign up here to see what happened On This Day, every day in your inbox! Email address By signing up, you agree to our Privacy Notice.

Adarsh Kumar 4 years, 4 months ago

Newton’s first law: the law of inertia Newton’s first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force. In fact, in classical Newtonian mechanics, there is no important distinction between rest and uniform motion in a straight line; they may be regarded as the same state of motion seen by different observers, one moving at the same velocity as the particle and the other moving at constant velocity with respect to the particle. This postulate is known as the law of inertia.  basketball; Newton's laws of motion When a basketball player shoots a jump shot, the ball always follows an arcing path. The ball follows this path because its motion obeys Isaac Newton's laws of motion. © Mark Herreid/Shutterstock.com The law of inertia was first formulated by Galileo Galilei for horizontal motion on Earth and was later generalized by René Descartes. Although the principle of inertia is the starting point and the fundamental assumption of classical mechanics, it is less than intuitively obvious to the untrained eye. In Aristotelian mechanics and in ordinary experience, objects that are not being pushed tend to come to rest. The law of inertia was deduced by Galileo from his experiments with balls rolling down inclined planes. For Galileo, the principle of inertia was fundamental to his central scientific task: he had to explain how is it possible that if Earth is really spinning on its axis and orbiting the Sun, we do not sense that motion. The principle of inertia helps to provide the answer: since we are in motion together with Earth and our natural tendency is to retain that motion, Earth appears to us to be at rest. Thus, the principle of inertia, far from being a statement of the obvious, was once a central issue of scientific contention. By the time Newton had sorted out all the details, it was possible to accurately account for the small deviations from this picture caused by the fact that the motion of Earth’s surface is not uniform motion in a straight line (the effects of rotational motion are discussed below). In the Newtonian formulation, the common observation that bodies that are not pushed tend to come to rest is attributed to the fact that they have unbalanced forces acting on them, such as friction and air resistance. Get a Britannica Premium subscription and gain access to exclusive content.Subscribe Now Newton’s second law: F = ma  Learn how immovable objects and unstoppable forces are the same A lesson proving immovable objects and unstoppable forces are one and the same. © MinutePhysics (A Britannica Publishing Partner)See all videos for this article Newton’s second law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. The momentum of a body is equal to the product of its mass and its velocity. Momentum, like velocity, is a vector quantity, having both magnitude and direction. A force applied to a body can change the magnitude of the momentum or its direction or both. Newton’s second law is one of the most important in all of physics. For a body whose mass m is constant, it can be written in the form F = ma, where F (force) and a (acceleration) are both vector quantities. If a body has a net force acting on it, it is accelerated in accordance with the equation. Conversely, if a body is not accelerated, there is no net force acting on it. Newton’s third law: the law of action and reaction Newton’s third law states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. The third law is also known as the law of action and reaction. This law is important in analyzing problems of static equilibrium, where all forces are balanced, but it also applies to bodies in uniform or accelerated motion. The forces it describes are real ones, not mere bookkeeping devices. For example, a book resting on a table applies a downward force equal to its weight on the table. According to the third law, the table applies an equal and opposite force to the book. This force occurs because the weight of the book causes the table to deform slightly so that it pushes back on the book like a coiled spring. If a body has a net force acting on it, it undergoes accelerated motion in accordance with the second law. If there is no net force acting on a body, either because there are no forces at all or because all forces are precisely balanced by contrary forces, the body does not accelerate and may be said to be in equilibrium. Conversely, a body that is observed not to be accelerated may be deduced to have no net force acting on it. Influence of Newton’s laws Newton’s laws first appeared in his masterpiece, Philosophiae Naturalis Principia Mathematica (1687), commonly known as the Principia. In 1543 Nicolaus Copernicus suggested that the Sun, rather than Earth, might be at the centre of the universe. In the intervening years Galileo, Johannes Kepler, and Descartes laid the foundations of a new science that would both replace the Aristotelian worldview, inherited from the ancient Greeks, and explain the workings of a heliocentric universe. In the Principia Newton created that new science. He developed his three laws in order to explain why the orbits of the planets are ellipses rather than circles, at which he succeeded, but it turned out that he explained much more. The series of events from Copernicus to Newton is known collectively as the Scientific Revolution. In the 20th century Newton’s laws were replaced by quantum mechanics and relativity as the most fundamental laws of physics. Nevertheless, Newton’s laws continue to give an accurate account of nature, except for very small bodies such as electrons or for bodies moving close to the speed of light. Quantum mechanics and relativity reduce to Newton’s laws for larger bodies or for bodies moving more slowly. The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Erik Gregersen, Senior Editor. Learn More in these related Britannica articles:  mechanics: Newton’s laws of motion and equilibrium In his Principia, Newton reduced the basic principles of mechanics to three laws:…  celestial mechanics: Newton’s laws of motion The empirical laws of Kepler describe planetary motion, but Kepler made no attempt to define or constrain...…  evolution: Genetic equilibrium: the Hardy-Weinberg law …role similar to that of Newton’s first law of motion in mechanics. Newton’s first law says that a body...…  HISTORY AT YOUR FINGERTIPS Sign up here to see what happened On This Day, every day in your inbox! Email address By signing up, you agree to our Privacy Notice. NEWTON AND INFINITE SERIES Sections HomeLiteratureLibraries & Reference Works Newton and Infinite Series Cite Share More BY John Colin Stillwell View Edit History Isaac Newton’s calculus actually began in 1665 with his discovery of the general binomial series(1 + x)n = 1 + nx + n(n − 1)/2!∙x2 + n(n − 1)(n − 2)/3!∙x3 +⋯for arbitrary rational values of n. With this formula he was able to find infinite series for many algebraic functions (functions y of x that satisfy a polynomial equation p(x, y) = 0). For example,(1 + x)−1 = 1 − x + x2 − x3 + x4 − x5 +⋯ and1/Square root of√(1 − x2) = (1 + (−x2))−1/2 = 1 + 1/2∙x2 + 1∙3/2∙4∙x4+1∙3∙5/2∙4∙6∙x6 +⋯.  In turn, this led Newton to infinite series for integrals of algebraic functions. For example, he obtained the logarithm by integrating the powers of x in the series for (1 + x)−1 one by one,log (1 + x) = x − x2/2 + x3/3 − x4/4 + x5/5 − x6/6 +⋯,and the inverse sine series by integrating the series for 1/Square root of√(1 − x2),sin−1(x) = x + 1/2∙x3/3 + 1∙3/2∙4∙x5/5 + 1∙3∙5/2∙4∙6∙x7/7 +⋯. Finally, Newton crowned this virtuoso performance by calculating the inverse series for x as a series in powers of y = log (x) and y = sin−1 (x), respectively, finding the exponential seriesx = 1 + y/1! + y2/2! + y3/3! + y4/4! +⋯and the sine seriesx = y − y3/3! + y5/5! − y7/7! +⋯. Note that the only differentiation and integration Newton needed were for powers of x, and the real work involved algebraic calculation with infinite series. Indeed, Newton saw calculus as the algebraic analogue of arithmetic with infinite decimals, and he wrote in his Tractatus de Methodis Serierum et Fluxionum (1671; “Treatise on the Method of Series and Fluxions”): Get a Britannica Premium subscription and gain access to exclusive content.Subscribe Now I am amazed that it has occurred to no one (if you except N. Mercator and his quadrature of the hyperbola) to fit the doctrine recently established for decimal numbers to variables, especially since the way is then open to more striking consequences. For since this doctrine in species has the same relationship to Algebra that the doctrine of decimal numbers has to common Arithmetic, its operations of Addition, Subtraction, Multiplication, Division and Root extraction may be easily learnt from the latter’s. For Newton, such computations were the epitome of calculus. They may be found in his De Methodis and the manuscript De Analysi per Aequationes Numero Terminorum Infinitas (1669; “On Analysis by Equations with an Infinite Number of Terms”), which he was stung into writing after his logarithmic series was rediscovered and published by Nicolaus Mercator. Newton never finished the De Methodis, and, despite the enthusiasm of the few whom he allowed to read De Analysi, he withheld it from publication until 1711. This, of course, only hurt him in his priority dispute with Gottfried Wilhelm Leibniz. John Colin Stillwell Learn More in these related Britannica articles:  Isaac Newton Isaac Newton, English physicist and mathematician, who was the culminating figure of the...…  binomial theorem Binomial theorem, statement that for any positive integer n, the nth power...…  Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz, German philosopher, mathematician, and political adviser, important...…  HISTORY AT YOUR FINGERTIPS Sign up here to see what happened On This Day, every day in your inbox! Email address By signing up, you agree to our Privacy Notice. MOTION Sections & Media HomeSciencePhysicsMatter & Energy Motion mechanics Cite Share More BY The Editors of Encyclopaedia Britannica View Edit History FULL ARTICLE Motion, in physics, change with time of the position or orientation of a body. Motion along a line or a curve is called translation. Motion that changes the orientation of a body is called rotation. In both cases all points in the body have the same velocity (directed speed) and the same acceleration (time rate of change of velocity). The most general kind of motion combines both translation and rotation. Key People:  Thomas Hobbes Galileo Gottfried Wilhelm Leibniz Jean Buridan Pafnuty ChebyshevRelated Topics: Brownian motion Wave motion Vibration Phase Action All motions are relative to some frame of reference. Saying that a body is at rest, which means that it is not in motion, merely means that it is being described with respect to a frame of reference that is moving together with the body. For example, a body on the surface of the Earth may appear to be at rest, but that is only because the observer is also on the surface of the Earth. The Earth itself, together with both the body and the observer, is moving in its orbit around the Sun and rotating on its own axis at all times. As a rule, the motions of bodies obey Newton’s laws of motion. However, motion at speeds close to the speed of light must be treated by using the theory of relativity, and the motion of very small bodies (such as electrons) must be treated by using quantum mechanics.  READ MORE ON THIS TOPIC philosophy of physics: The question of motion Long before Kant, Newton himself designed a thought experiment to show that relationism must be false.... The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Adam Augustyn, Managing Editor, Reference Content. Learn More in these related Britannica articles:  philosophy of physics: The question of motion Long before Kant, Newton himself designed a thought experiment to show that relationism must be false....…  Aristotle: Motion Motion (kinesis) was for Aristotle a broad term, encompassing changes in several different...…  mathematics: The universities Uniformly accelerated motion starting at zero velocity gives rise to a triangular figure (see...…  HISTORY AT YOUR FINGERTIPS Sign up here to see what happened On This Day, every day in your inbox! Email address By signing up, you agree to our Privacy Notice.
Hay
  • 1 answers

Jyoti Gupta 4 years, 4 months ago

When and why did she go to the U.s? Who did she marry ?
  • 2 answers

Adarsh Kumar 4 years, 4 months ago

(3a-7b-c)² =(3a)² +(-7b)² +(-c)² +2(3a)(-7b) +2(-7b)(-c) +2(-c)(3a)_____________=9a²+49b²+c² -42ab+14bc-6ac✓✓✓✓

Ayush Raj 4 years, 4 months ago

Sdddffft
  • 3 answers

Bhavesh Rukar 4 years, 4 months ago

Iam a boy kptle

Nikhil Kumar 4 years, 4 months ago

What is this

Nikhil Kumar 4 years, 4 months ago

Hay
  • 3 answers

Shivani Sharma 4 years, 3 months ago

Cpu

Arya Modi 4 years, 4 months ago

Hi

Pratyush Singh 4 years, 4 months ago

Hi
  • 2 answers

Niharika Nidhi 4 years, 4 months ago

What were landed groups?

Mansi Sharma 4 years, 4 months ago

1) There was great growth of population as compared to the production of food in Britain. 2) Govt. restricted the import of crops under the pressure of landed groups.
  • 5 answers

Sonali Kumari Kumari 4 years, 3 months ago

Chandigarh

Nikhil Mauraya 4 years, 3 months ago

Chandigarh

Abhipsa Baral 4 years, 3 months ago

Chandigarh

Devapriya K 4 years, 4 months ago

Chandigarh

Rudra Prasad Raman 4 years, 4 months ago

Chandigarh
  • 5 answers

Sia ? 4 years, 4 months ago

Chandigarh

Divyanshi Pandey 4 years, 2 months ago

Chandigarh

Mandeep Kaur 4 years, 3 months ago

Chandigarh

Nibedita Behera 4 years, 3 months ago

??????????

Abhipsa Baral 4 years, 3 months ago

Chandigarh
  • 3 answers

Lakshmishree Lekana 3 years, 6 months ago

Karnataka state is Bengaluru

Vihaan Vaghela 4 years, 4 months ago

Sri Lanka

Vihaan Vaghela 4 years, 4 months ago

India
  • 0 answers
  • 2 answers

Rahul Choudhary 4 years, 4 months ago

Because ionic compounds are held together by electrostatic forces between the oppositely charged ions.

Om Sharma 4 years, 4 months ago

It is because of the strong forces of attraction between the ions of the compound
  • 1 answers

? Akanksha Dhaka ? 4 years, 4 months ago

Margie was disappointed because she hoped that the country inspector would take her mechanical teacher along with him to repair it but the country inspector didn't take the mechanical teacher along with him so Margie was disappointed ??
  • 1 answers

Vihaan Vaghela 4 years, 4 months ago

Happy marriage anniversary ❣️❤️❤️?
  • 1 answers

Parv Kumar 5A 4 years, 4 months ago

Chapter 7 – वेदिन भी क्या दिन थे Page No 65: Question 1:कुम्मी के हाथ जो कि ताब आई थी वह कब छपी होगी? Answer:कुम्मी के हाथ जो कि ताब आई थी वह आज के ज़मानेमेंही छपी होगी। यह कहानी भवि ष्य पर आधारि त हैऔर हम वर्तमर्त ान हैं। अतः कि ताब आज के समय मेंछपी होगी। Question 2:रोहि त नेकहा था, “कि तनी पस्ुतकें बेकार जाती होंगी। एक बार पढ़ी और फि र बेकार हो गई।” क्या सचमचु मेंऐसा होता है? Answer:हम यह नहींमानतेहैं। कई बार ऐसा ही होता हैकि कुछ पस्ुतकें केवल एक बार पढ़कर बेकार हो जाती हैं। उन्हेंरद्दी मेंदेना पड़ता है। परन्तुउसमेंकुछ ही कि ताबों के साथ ऐसा होता है। अधि कतर कि ताबें एक व्यक्ति के बाद अलग-अलग व्यक्ति यों के हाथों जाती हैं। वेबेकार नहींहोती हैं। उनके कारण कई लोगों को महत्वपर्णू र्णजानकारी व ज्ञान प्राप्त होता है। यदि ऐसा न होता, तो आज पस्ुतकालय नहींबनेहोत।े Question 3: कागज के पन्नों की कि ताब और टेलीवि ज़न के पर्दे पर चलनेवाली कि ताब। तमु इनमेंसेकि सको पसदं करोगे? क्यों? Answer:हम कागज़ के पन्नों की कि ताब को ही ज़्यादा पसं द करेंगे। इसके पीछेबहुत सेकारण हैं। वेइस प्रकार हैं।- 1. कागज़ के पन्नेवाली कि ताब को हम कहीं भी सरलतापर्वूकर्व उठाकर लेजा सकतेहैं। इसके वि परीत टेलीवि ज़न के पर्दे पर चलनेवाली कि ताब को उठाकर लेजाना कठि न होगा। यदि उठाकर लेजानेकी सविुविधा भी उपलब्ध हो, फि र भी यह कि ताब की तलु ना मेंअधि क भारी होगी। 2. कागज़ के पन्नेवाली कि ताब को कभी भी और कहीं भी पढ़ा जा सकता है। परन्तुटेलीवि ज़न के पर्दे पर चलनेवाली कि ताब को कहीं नहीं पढ़ा जा सकता है। इसके लि ए हर समय बि जली की आवश्यकता होगी। यदि इसेचार्ज भी कि या जा सके, तो एक नि श्चि त समय के लि ए ही इसेचलाया जा सकेगा। चार्ज समाप्त होनेपर यह बदं हो जाएगी। कागज़ के पन्नेवाली कि ताब के साथ यह परेशानी नहींआएगी। 3. कागज़ के पन्नेवाली कि ताब मेंआनेवाला खर्च एक बार होगा। परन्तुटेलीवि ज़न के पर्दे पर चलनेवाली कि ताब पर बार-बार बि जली आदि का खर्चा करना पड़गे ा। 4. कागज़ के पन्नेवाली कि ताब को आवश्यकता अनसु ार पढ़ा जा सकेगा। परन्तुबि जली के पर्दे पर चलने वाली कि ताब को एक बार मेंही परूा पढ़ना पढ़ेगा। अन्यथा उसेदोबारा आरंभ सेचलाना पड़गे ा। Question 4:तमु कागज़ पर छपी कि ताबों सेपढ़तेहो। पता करो कि कागज़ सेपहलेकी छपाई कि स-कि स चीज़ पर हुआ करती थी? Answer:कागज़ सेपहलेछपाई भोज पत्रों, छालों, लकड़ी और धातुसेबनेपत्रों पर होती थी। Question 5:तमु मशीन की मदद सेपढ़ना चाहोगेया अध्यापक की मदद से? दोनों के पढ़ानेमें कि स-कि स तरह की आसानि याँऔर मश्किुश्कि लेंहैं? Answer:1. हमेंअध्यापक सेपढ़ना ज़्यादा आसान और अच्छा लगेगा क्योंकि वेहमारी मश्किुश्कि लों का हल तरुंत ही वि स्तारपर्वूकर्व और अलग-अलग तरीके सेबता सकतेहैं। मशीन सेयह ज्ञान मि लना थोड़ा मश्किुश्कि ल हो जाएगा। एक अध्यापक सभी वि षय नहींपढ़ा सकतेहैं। इसके वि परीत मशीन सेसभी वि षयों के बारेमें जानकारी प्राप्त हो जाएगी। 2. अध्यापक सेपढ़तेसमय डाँट खानेका डर लगा रहता है। मशीन सेपढ़ते समय ऐसा डर नहींलगेगा। 3. मशीन हमारेनि यत्रं ण मेंहोगी, हम मशीन के नि यत्रं ण मेंनहींहोगें। अध्यापक सेपढ़तेसमय हमेंउनके कहेअनसु ार ही कार्य करना पड़गे ा। Question 1: 1967 मेंहि दं ी मेंछपी इस कहानी मेंकल्पना की गई हैकि सालों बाद स्कूल की जगह मशीनों लेलेंगी। तमु भी कल्पना करो कि बहुत सालों बाद येचीज़ेंकैसी होंगी – ● पेन ● घड़ी ● टेलीफ़ोन/मोबाइल ● टेलि वि ज़न ● कोई और चीज़ जि सके बारेमेंतमु सोचना चाहो………….. Answer:आज वि ज्ञान की तरक्की सेसमाज मेंऔर हमारेजीवन मेंकाफी बदलाव आ रहेहैं। कुछ सालों बाद वि ज्ञान की तरक्की सेहो सकता हैकि जीवन मेंसविुविधाएँऔर बढ़ जाएँ। जसै े– ● पेन – आनेवालेसमय मेंहो सकता हैकि लि खनेके लि ए पेन को पकड़नेकी ज़रूरत ही न पड़।े पेन अपने-आप हमारी सोच के अनसु ार लि खनेलगे। या फि र ऐसा भी हो सकता हैकि पेन की ज़रूरत ही न पड़।े सारेकाम कम्प्यटू र सेही टाइप करनेसेहो जाएँ। ● घड़ी – भवि ष्य मेंशायद घड़ि याँसमय बतानेके साथ-साथ मोबाइल का काम करे। इसमें अनेक प्रकार की सविुविधाएँप्राप्त हों। ● टेलीफोन/मोबाइल – टेलीफोन वि ज्ञान का एक अद्भतु चमत्कार है। आज मोबाइल फोन से हम सि र्फ एक दसू रेसेबातेंही कर सकतेहैं। आनेवालेसमय मेंशायद मोबाइल फोन द्वारा हम कि सी को कुछ सामान भी भेज सकें। ● टेलीवि ज़न –टेलीवि ज़न आनेवालेसमय मेंकंप्यटू र, मोबाइल, घर की सरुक्षा प्रणाली आदि का भी का करनेलगे। ● आनेवालेसमय मेंघर-घर मेंसौर ऊर्जा का प्रयोग हो। घर के सारेबि जली सेचलनेवाले उपकरण सौर ऊर्जा सेकार्य करें। Question 2: नीचेकुछ वस्तओु ंकेनाम दि ए गए हैं। बड़ों सेपछू कर पता करो कि बीस साल पहलेइनकी क्या कीमत थी और अब इनका कि तना दाम हैहै आलू लड्डू शक्कर दाल चावल दधू ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………………………………………………… ………………………………………………………………………………………………………………………………………………………… …………………………… Answer: वस्तुका नाम आज उस वस्तुकी कीमत 20 साल पहलेउस वस्तुकी कीमत आलू 10 रूपए प्रति किलो 2 रूपए प्रति किलो लड्डू 150 रूपए प्रति किलो 2 रूपए प्रति किलो शक्कर 40 रूपए प्रति किलो 5 रूपए प्रति किलो दाल 75 रूपए प्रति किलो 16 रूपए प्रति किलो चावल 25 रूपए प्रति किलो 5 रूपए प्रति किलो दधू 39 रूपए प्रति किलो 10 रूपए प्रति किलो Page No 66: Question 3: आज हमारेकई काम कंप्यटू र की मदद सेहोतेहैं। सोचो और लि खो कि अपनेव्यक्ति गत और सार्वजर्व नि क जीवन मेंहम कंप्यटू र का इस्तमे ाल कि न-कि न उद्देश्यों के लि ए करतेहैं? व्यक्तिगत सार्वजर्व निक ……………………….. ……………………….. ……………………….. ……………………….. ……………………….. ……………………….. ……………………….. ……………………….. ……………………….. ……………………….. Answer: व्यक्तिगत सार्वजर्व निक फिल्म देखनेके लिए चित्र बनानेके लिए नई-नई खबरेंजाननेके लिए व्यापार का हिसाब-किताब रखनेके लिए किसी विषय पर खोज करनेके लिए ई-मेल भेजनेके लिए जानकारी देनेया लेनेके लि ए कई तरीके अपनाए जातेहैं। हम जो कुछ सोचतेया महससू करतेहैंउसे अभि व्यक्त करनेया बतानेके भी कई ढंग हो सकतेहैं। बॉक्स मेंऐसेकुछ साधन दि ए गए हैं। उनका वर्गी करण करकेनीचेदी गई तालि का मेंलि खो। संदेश अभिनय रेडियो नत्ृय के हाव-भाव फ़ोन विज्ञापन नोटिस संकेत-भाषा चित्र मोबाइल टी.वी. मोबाइल संदेश फ़ैक्स इंटरनेट तार इश्तहार जानकारी भावनाएँ ………………………………… ………………………………… ………………………………… ………………………………… ………………………………… ………………………………… ………………………………… ………………………………… ………………………………… ………………………………… Answer: लि खी चीज़ेंइकतरफ़ा भी हो सकती हैंऔर दो तरफ़ा भी। जि न चीज़ों के ज़रि ए इकतरफ़ा सप्रं ेषण होता है उनकेआगे(®) का नि शान लगाओ। दो तरफ़ा सवं ाद की चीज़ों केआगे(«) का नि शान लगाओ। जानकारी भावनाएँ रेडियो (®) अभिनय («) विज्ञापन (®) नत्ृय के हाव-भाव («) नोटिस (®) संकेत-भाषा («) टी. वी. (®) संदेश («) फैक्स (®) फोन («) इंटरनेट (®) मोबाइल («) इश्तहार (®) तार («) चित्र (®) Page No 67: Question 1:दोस्तों के साथ बात करके अदं ाज़ा लगाओ कि 50 साल बाद इनमेंक्या-क्या बदल जाएगा- ● फि ल्मों में…………… ● गाँव की हालत में…………………. ● तम्ुहारी परि चि त कि सी नदी में…………… ● स्कूल में…………… Answer:उत्तर- फि ल्मों में- फि ल्मेंबनाना सरल हो जाएगा। सोच के अनरुुप फि ल्मेंबनाई जा सकेंगी। इसमें अत्याधनिुनिक यत्रं ों का उपयोग करके मनचाहेदृश्यों को फि ल्माया जाएगा। क्या पता इसमेंकलाकारों को साल-सालभर तक काम करनेकी आवश्यकता ही नहींपड़।े उनके स्थान पर कंप्यटू र की सहायता ली जाए। गाँव की- गाँव भी शहरों की तलु ना मेंआधनिुनिक हो जाएँगे। यहाँपर भी अत्याधनिुनिक सचं ार के माध्यम पहुँच जाएँगे। हर गाँव का अपना बड़ा वि द्यालय होगा। हर गाँव शि क्षि त होगा। खेती करनेके लि ए अत्याधनिुनिक साधन उपलब्ध होगेंl तम्ुहारी परि चि त कि सी नदी में- नदी मेंगंदगी का वि शाल ढेर होगा। ऐसा भी हो सकता हैकि उसका अस्ति त्व ही समाप्त हो जाए। वहाँपर गगनचबंु ी इमारतेंबन जाए। स्कूल में- स्कूल मेंब्लकै बोर्ड और चाक के स्थान पर बड़-ेबड़ेपरदों के माध्यम सेसमझाया जाए। स्कूलों में वर्दी हटा दी जाए। इमारतों के स्थान पर बच्चों को प्रकृति के मध्य पढ़ाया जाए। (नोट: वि द्यार्थी इन प्रश्नों का उत्तर अपनेअनभु व पर देनेका प्रयाय करें।) Question 1: आसीमोव की कहानी 2155 यानी भवि ष्य मेंआनेवालेसमय के बारेमेंहै। फि र भी कहानी में‘थे’ का इस्तमे ाल हुआ हैजो बीतेसमय के बारेमेंबताता है। ऐसा क्यों है? Answer: ऐसा लि खनेका कारण हैकि कहानी बेशक भवि ष्य की हो। परन्तुइसमेंवर्तमर्त ान समय दि खाया गया है। वहाँके बच्चेआज के समय के बारेमेंबात कर रहेहैं, जो बीत गया है। इसलि ए इसमेंबीतेसमय को दर्शा ने वालेक्रि या शब्द ‘थे’ का प्रयोग कि या गया है। Question 2: (क) ‘जब मझु ेबहुत डर लगा था……’ ‘मैंजब छोटा था……’ इस शीर्षकर्ष सेजड़ुेकि सी अनभु व का वर्णनर्ण करो। (ख) तम्ुहें‘म’ैंशीर्षकर्ष सेएक अनच्ुछेद लि खना है। अपनेस्वभाव, अच्छाइयों, कमि यों, पसदं -नापसदं के बारे मेंसोचो और लि खो। या कि सी मचै का आखँ ों देखा हाल ऐसेलि खो मानो वह अभी तम्ुहारी आखँ ों के सामने हो रहा है। (ग) अगली छुट्टि यों मेंतम्ुहेंनानी के पास जाना है। वहाँतमु क्या-क्या करोगे, कैसेवक़्त बि ताओगे-इस पर एक अनच्ुछेद लि खा। तमु नेजो तीन अनच्ुछेद लि खेउनमेंसेपहलेका सबं धं उससेहैजो बीत चकु ा है। दसू रेमेंअभी की बात है और तीसरेमेंबाद मेंघटनेवाली घटनाओं का वर्णनर्ण है। इन अनच्ुछेदों मेंइस्तमे ाल की गई क्रि याओं को ध्यान सेदेखो। येबीतेहुए, अभी केऔर बाद के समय के बारेमेंबताती हैं। Answer: (क) ‘जब मझु ेबहुत डर लगा था……’ ‘मैंजब छोटा था……’ उस समय की बात है, जब मैंबहुत छोटा था। बारि श का समय था। आकाश मेंकालेबादल छाए हुए थे। मैं बाहर खेल रहा था। बादलों मेंगड़गड़ाहट हो रही थी। अचानक उसी समय एक भयकं र गर्जनर्ज ा नेमेरा दि ल दहला दि या। उस आवाज़ को सनु कर मैंबहुत डर गया। डर के मारेमैंकाँप रहा था। मझु ेसमझ नहींआ रहा था कि मैंक्या करूँ। माँनेभी वह आवाज़ सनु ी थी। वह मझु ेदेखनेघर सेनि कल आईं। मेरी हालत देखकर माँभी घबरा गई। माँमझु ेजल्दी घर के अदं र लेगई। माँनेबताया कि बारि श के दि नों मेंअकसर बि जली गि रती है। उस दि न के बाद मेंकभी बारि श मेंघर सेबाहर नहींनि कला। (ख) मैंएक अच्छा बालक हूँ। मैंसदैव बड़ों का कहना मानता हूँ। सबका आदर करता हूँ। मैंसदैव यह प्रयास करता हूँकि सबकी सहायता करूँऔर कि सी को कष्ट न दँ।ू समय पर पढ़ाई करता हूँऔर अपनेमि त्रों की सहायता भी करता हूँ। मेरेअदं र भी कुछ कमि याँहैं। मैंकि सी की बात का जल्दी बरुा मान जाता हूँ। मैंकम खाता हूँऔर अधि क बोलता हूँ। मझु ेपढ़ना और क्रि केट खेलना बहुत पसदं है। खानेमेंदाल-चावल और पि ज़्ज़ा अच्छा लगता है। दधू मैंरोज़ पीना पसदं करता हूँ। मझु ेजि द्द करना पसदं नहींहै। (ग) मेरी नानी मसरूी मेंरहती है। मैंआनेवाली छुट्टि यों मेंनानी के पास जाऊँगा। मेरी नानी बहुत अच्छी हैं। उन्होंनेमझु सेवादा कि या हैकि वेमझु ेसरुकंडा देवी और धनोल्टी लेकर जाएँगी। नानी के साथ मैंमसरूी मेंप्रसि द्ध लेखक रस्कि न बॉण्ड सेमि लनेभी जाऊँगा। इसके साथ ही मैंमॉल रोड़ मेंअपनेभाई-बहन के साथ खबू मौज-मस्ती करूँगा। वहाँपर ट्राली भी है, जि स पर मेंमसरूी की सदंुर वादि यों का आनदं लँगू ा। वहाँ की सदंुर वादि यों के मध्य मैंसदंुर चि त्रकारी बनाऊँगा और कवि ताएँभी लि खगूँ ा। (नोट: वि द्यार्थी इन प्रश्नों का उत्तर अपनेअनभु व पर देनेका प्रयाय करें।)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App