1. /
2. CBSE
3. /
4. Class 12
5. /
6. Inverse Trigonometric Functions Class...

# Inverse Trigonometric Functions Class 12 Notes Mathematics

### myCBSEguide App

Download the app to get CBSE Sample Papers 2023-24, NCERT Solutions (Revised), Most Important Questions, Previous Year Question Bank, Mock Tests, and Detailed Notes.

Inverse Trigonometric Functions class 12 Notes Mathematics in PDF are available for free download in myCBSEguide mobile app. The best app for CBSE students now provides Inverse Trigonometric Functions class 12 Notes latest chapter wise notes for quick preparation of CBSE board exams and school-based annual examinations. Class 12 Mathematics notes on chapter 2 Inverse Trigonometric Functions are also available for download in CBSE Guide website.

## Inverse Trigonometric Functions Class 12 Notes Mathematics

Download CBSE class 12th revision notes for chapter 2 Inverse Trigonometric Functions in PDF format for free. Download revision notes for Inverse Trigonometric Functions class 12 Notes and score high in exams. These are the Inverse Trigonometric Functions class 12 Notes prepared by team of expert teachers. The revision notes help you revise the whole chapter 2 in minutes. Revision notes in exam days is one of the best tips recommended by teachers during exam days.

## CBSE Class 12 Mathematics Chapter 2 Inverse Trigonometric Functions

• The domains and ranges (principal value branches) of inverse trigonometric functions are given in the following table:
 Functions Domain Range (Principal Value Branches) [-1, 1] [-1, 1] R- [-1, 1] – {0} R-[-1, 1] R R
• should not be confused with . In fact And similarly for other trigonometric functions.
• The value of an inverse trigonometric functions which lies in its principal value branch is called the principal value of that inverse trigonometric functions.
• For suitable values of domain, we have

${\cot ^{ - 1}}{1 \over x} = {\tan ^{ - 1}}x$

$\cos e{c^{ - 1}}{1 \over x} = {\sin ^{ - 1}}x$

${\sec ^{ - 1}}{1 \over x} = {\cos ^{ - 1}}x$

${\cos ^{ - 1}}x + o{\cos ^{ - 1}}y = {\cos ^{ - 1}}\left( {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right)$

${\tan ^{ - 1}}x + {\tan ^{ - 1}}y + {\tan ^{ - 1}}z$ = ${\tan ^{ - 1}}\left( {{{x + y + z - xyz} \over {1 - xy - yz - zx}}} \right)$

$2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$

$2{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {2{x^2} - 1} \right)$

$2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {{{2x} \over {1 + {x^2}}}} \right)$ = ${\cos ^{ - 1}}\left( {{{1 - {x^2}} \over {1 + {x^2}}}} \right) = {\tan ^{ - 1}}\left( {{{2x} \over {1 - \sqrt x }}} \right)$

$3{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {3x - 4{x^3}} \right)$

$3{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {4{x^3} - 3x} \right)$

$3{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {{{3x - {x^3}} \over {1 - 3{x^2}}}} \right)$

Conversion:

• ${\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}}$=${\tan ^{ - 1}}{x \over {\sqrt {1 - {x^2}} }} = {\cot ^{ - 1}}{{\sqrt {1 - {x^2}} } \over x}$ = ${\sec ^{^{ - 1}}}{1 \over {\sqrt {1 - {x^2}} }} = \cos e{c^{ - 1}}{1 \over x}$
• ${\cos ^{ - 1}}x = {\sin ^{ - 1}}\sqrt {1 - {x^2}}$=${\tan ^{^{ - 1}}}{{\sqrt {1 - {x^2}} } \over x} = {\cot ^{ - 1}}{x \over {\sqrt {1 - {x^2}} }}$ = ${\sec ^{^{ - 1}}}{1 \over x} = \cos e{c^{ - 1}}{1 \over {\sqrt {1 - {x^2}} }}$
• ${\tan ^{^{ - 1}}}x = {\sin ^{ - 1}}{x \over {\sqrt {1 + {x^2}} }}$=${\cos ^{^{ - 1}}}{1 \over {\sqrt {1 + {x^2}} }} = {\sec ^{ - 1}}\sqrt {1 + {x^2}}$ = $\cos e{c^{^{ - 1}}}{{\sqrt {1 + {x^2}} } \over x} = {\cot ^{ - 1}}{1 \over x}$
• ${\cot ^{^{ - 1}}}x = {\sin ^{ - 1}}{1 \over {\sqrt {1 + {x^2}} }}$=${\cos ^{^{ - 1}}}{x \over {\sqrt {1 + {x^2}} }} = {\sec ^{ - 1}}{1 \over x}$= ${\sec ^{^{ - 1}}}{{\sqrt {1 + {x^2}} } \over x} = \cos e{c^{ - 1}}\sqrt {1 + {x^2}}$
• ${\sec ^{^{ - 1}}}x = {\tan ^{ - 1}}{{\sqrt {{x^2} - 1} } \over 1}$=${\cot ^{^{ - 1}}}{1 \over {\sqrt {{x^2} - 1} }} = {\sin ^{ - 1}}{{\sqrt {{x^2} - 1} } \over x}$ = ${\cos ^{^{ - 1}}}{1 \over x} = \cos e{c^{ - 1}}{x \over {\sqrt {{x^2} - 1} }}$
• $\cos e{c^{^{ - 1}}}x = {\sin ^{ - 1}}{1 \over x}$=${\tan ^{^{ - 1}}}{1 \over {\sqrt {{x^2} - 1} }} = {\cot ^{ - 1}}\sqrt {{x^2} - 1}$=${\sec ^{^{ - 1}}}{x \over {\sqrt {{x^2} - 1} }} = {\cos ^{ - 1}}{{\sqrt {{x^2} - 1} } \over x}$

Some other properties of Inverse Trigonometric Function:

• ${\tan ^{^{ - 1}}}{x \over {\sqrt {{a^2} - {x^2}} }} = {\sin ^{ - 1}}{x \over a}$
• ${\cot ^{^{ - 1}}}{x \over {\sqrt {{a^2} - {x^2}} }} = {\cos ^{ - 1}}{x \over a}$
• ${\tan ^{^{ - 1}}}{a \over {\sqrt {{x^2} - {a^2}} }} = \cos e{c^{ - 1}}{x \over a}$
• ${\cot ^{^{ - 1}}}{a \over {\sqrt {{x^2} - {a^2}} }} = {\sec ^{ - 1}}{x \over a}$

## CBSE Class 12 Revision Notes and Key Points

Inverse Trigonometric Functions class 12 Notes Mathematics. CBSE quick revision note for class-12 Chemistry Physics Math’s, Biology and other subject are very helpful to revise the whole syllabus during exam days. The revision notes covers all important formulas and concepts given in the chapter. Even if you wish to have an overview of a chapter, quick revision notes are here to do if for you. These notes will certainly save your time during stressful exam days.

To download Inverse Trigonometric Functions class 12 Notes, sample paper for class 12 Physics, Chemistry, Biology, History, Political Science, Economics, Geography, Computer Science, Home Science, Accountancy, Business Studies and Home Science; do check myCBSEguide app or website. myCBSEguide provides sample papers with solution, test papers for chapter-wise practice, NCERT Inverse Trigonometric Functions, NCERT Exemplar Inverse Trigonometric Functions, quick revision notes for ready reference, CBSE guess papers and CBSE important question papers. Sample P, per all are made available through the best app for CBSE students and myCBSEguide website.

Test Generator

Create question paper PDF and online tests with your own name & logo in minutes.

myCBSEguide

Question Bank, Mock Tests, Exam Papers, NCERT Solutions, Sample Papers, Notes