No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
Mcq
  • 0 answers
  • 1 answers

Sumit Yadav 4 years, 3 months ago

A(-1,0)B(3,1)C(2,2)D(x, y) ABCD is a diagonal apply mid point method AC and BD and 4th vertex (-2,1)
  • 1 answers

Vani Bansal 4 years, 3 months ago

Concave- focal length(-) Convex- focal length (+)
  • 2 answers

Aditya Choudhary 4 years, 3 months ago

Yes, there are some parents like Mrs Pumphrey who spoil their children by over-indulging and pampering them. They try to overfeed their children or pets despite knowing the ill-effects of overeating on their health. Mark me perfect ...

Manveet Singh Gurjar 4 years, 3 months ago

Ya there are parents like Mrs. Pumphery. But she is a pet owner in chapter they use to talk about pet his name was Tricki.
  • 1 answers

Sumit Yadav 4 years, 3 months ago

the y axis divides the line joining the points (-2, -3) and (3, 7) be k : 1. point of intersection line to y axis to be (0, y). Apply section formula and answer 2:3
  • 1 answers

🤟Royal Thakur 🤟 4 years, 3 months ago

Subscribe you or your youtube channel ???
  • 3 answers

Aseem Mahajan 4 years, 3 months ago

Learn more:
[tex]\sf \color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & \green{0} & \green{\dfrac{1}{2}}& \green{\dfrac{1}{ \sqrt{2} }} &\green{ \dfrac{ \sqrt{3}}{2} }&\green{1} \\ \hline \\ \rm \red{cos \: A} & \green{1} &\green{ \dfrac{ \sqrt{3} }{2}}&\green{ \dfrac{1}{ \sqrt{2} }} & \green{\dfrac{1}{2}} &\green{0} \\ \hline \\\rm \red{tan A}& \green{0} &\green{ \dfrac{1}{ \sqrt{3} }}&\green{1} & \green{\sqrt{3}} & \rm \green{\infty} \\ \hline \\ \rm \red{cosec A }& \rm \green{\infty} & \green{2}& \green{\sqrt{2} }&\green{ \dfrac{2}{ \sqrt{3} }}&\green{1} \\ \hline\\ \rm \red{sec A} & \green{1 }&\green{ \dfrac{2}{ \sqrt{3} }}& \green{\sqrt{2}} & \green{2} & \rm \green{\infty} \\ \hline \\ \rm \red{cot A }& \rm \green{\infty} & \green{\sqrt{3}}& \green{1} & \green{\dfrac{1}{ \sqrt{3} }} & \green{0}\end{array}}}}[/tex]

Aseem Mahajan 4 years, 3 months ago

$$sinA = x$$
$$secA=y$$
$$\sf \bf :\longmapsto \dfrac{1}{cosA} = y$$
$$\sf \bf :\longmapsto \dfrac{sinA}{cosA} = xy$$
$$\sf \bf :\longmapsto tanA =xy$$
Learn more:

$$\sf \color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf {\angle A} & \{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &{ \sf{90}^{ \circ}} \\ \hline \\ \rm {sin A} & \green{0} & {\dfrac{1}{2}}& {\dfrac{1}{ \sqrt{2} }} &{ \dfrac{ \sqrt{3}}{2} }&{1} \\ \hline \\ \rm {cos \: A} & {1} &{ \dfrac{ \sqrt{3} }{2}}&{ \dfrac{1}{ \sqrt{2} }} & {\dfrac{1}{2}} &{0} \\ \hline \\\rm {tan A}& {0} &{ \dfrac{1}{ \sqrt{3} }}&{1} & {\sqrt{3}} & \rm {\infty} \\ \hline \\ \rm {cosec A }& \rm {\infty} & {2}& {\sqrt{2} }&{ \dfrac{2}{ \sqrt{3} }}&{1} \\ \hline\\ \rm {sec A} & {1 }&{ \dfrac{2}{ \sqrt{3} }}& {\sqrt{2}} & {2} & \rm {\infty} \\ \hline \\ \rm {cot A }& \rm {\infty} & {\sqrt{3}}& {1} & {\dfrac{1}{ \sqrt{3} }} &{0}\end{array}}}}$$

Prajan Elango 4 years, 3 months ago

Tan A = SinA/Cos A Sec A = 1/Cos A So TanA = SinA * Sec A = x*y = xy
  • 2 answers

Chaitali Sit 4 years, 2 months ago

Rajnitik Dal Ke MCQs

Riika Sharma 4 years, 3 months ago

Paper easy hoga ya hard
  • 2 answers

# I M Pranjana Reality 4 years, 3 months ago

Yes

Vidhi Verma 4 years, 3 months ago

True
  • 2 answers

Rohit Dongare 4 years, 2 months ago

Mountain or motion

Mamta Kumari 4 years, 3 months ago

Give option
  • 1 answers

Sumit Yadav 4 years, 3 months ago

plasma membrane.
  • 1 answers

Aishwarya Bagde 4 years, 1 month ago

Plasma membrane
  • 1 answers

Sarthak Daswani 4 years, 3 months ago

Web Based Training
  • 4 answers

🤟Royal Thakur 🤟 4 years, 3 months ago

??Wow bro ??????

Aseem Mahajan 4 years, 3 months ago

Edited table :

$$\sf \color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & \green{0} & \green{\dfrac{1}{2}}& \green{\dfrac{1}{ \sqrt{2} }} &\green{ \dfrac{ \sqrt{3}}{2} }&\green{1} \\ \hline \\ \rm \red{cos \: A} & \green{1} &\green{ \dfrac{ \sqrt{3} }{2}}&\green{ \dfrac{1}{ \sqrt{2} }} & \green{\dfrac{1}{2}} &\green{0} \\ \hline \\\rm \red{tan A}& \green{0} &\green{ \dfrac{1}{ \sqrt{3} }}&\green{1} & \green{\sqrt{3}} & \rm \green{\infty} \\ \hline \\ \rm \red{cosec A }& \rm \green{\infty} & \green{2}& \green{\sqrt{2} }&\green{ \dfrac{2}{ \sqrt{3} }}&\green{1} \\ \hline\\ \rm \red{sec A} & \green{1 }&\green{ \dfrac{2}{ \sqrt{3} }}& \green{\sqrt{2}} & \green{2} & \rm \green{\infty} \\ \hline \\ \rm \red{cot A }& \rm \green{\infty} & \green{\sqrt{3}}& \green{1} & \green{\dfrac{1}{ \sqrt{3} }} & \green{0}\end{array}}}}$$

Aseem Mahajan 2 years, 5 months ago

$$ \sf \bf :longmapsto xcosA = 8$$
$$\sf \bf :longmapsto cosA=\dfrac{8}{x}$$
Taking second equation,
$$\sf \bf :longmapsto 15cosecA = 8secA$$
$$\sf \bf :longmapsto 15\dfrac{1}{sinA} = 8\dfrac{1}{cosA}$$
$$\sf \bf :longmapsto tanA = \dfrac{15}{8}$$

Thus, you can see using a triangle that sides are respectively, 15k, 8k, 17k
$$\sf \bf :longmapsto cosA = \dfrac{8}{17}$$
Hence , x = 17

More information:

[tex]\sf \color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & \green{0} & \green{\dfrac{1}{2}}& \green{\dfrac{1}{ \sqrt{2} }} &\green{ \dfrac{ \sqrt{3}}{2} }&\green{1} \\ \hline \\ \rm \red{cos \: A} & \green{1} &\green{ \dfrac{ \sqrt{3} }{2}}&\green{ \dfrac{1}{ \sqrt{2} }} & \green{\dfrac{1}{2}} &\green{0} \\ \hline \\\rm \red{tan A}& \green{0} &\green{ \dfrac{1}{ \sqrt{3} }}&\green{1} & \green{\sqrt{3}} & \rm \green{\infty} \\ \hline \\ \rm \red{cosec A }& \rm \green{\infty} & \green{2}& \green{\sqrt{2} }&\green{ \dfrac{2}{ \sqrt{3} }}&\green{1} \\ \hline\\ \rm \red{sec A} & \green{1 }&\green{ \dfrac{2}{ \sqrt{3} }}& \green{\sqrt{2}} & \green{2} & \rm \green{\infty} \\ \hline \\ \rm \red{cot A }& \rm \green{\infty} & \green{\sqrt{3}}& \green{1} & \green{\dfrac{1}{ \sqrt{3} }} & \green{0}\end{array}}}}[/tex]

Aseem Mahajan 4 years, 3 months ago

17
  • 3 answers

Aseem Mahajan 4 years, 3 months ago

How 6 aren't 5? And total are 50 not 54

Its Nav Sandhu ✌✌ 4 years, 3 months ago

6 to 50 there were 6 perfect square and total no. 54 so P (E) :- 6/54 = 3/27 = 1/9 answer

Aseem Mahajan 4 years, 3 months ago

Perfect square number from 1 to 50 are only 5 (as 7²=49)
$$\sf \bf :\longmapsto P = \dfrac{5}{50} = \dfrac{1}{10}$$
  • 1 answers

Bhavya Gupta 4 years, 3 months ago

Methnoic or formic acid
  • 0 answers
  • 5 answers

Vaishnavi Acharya 4 years, 3 months ago

John berrymen

Ragini Chourasiya 4 years, 3 months ago

???? ????????

Soni Sharma 4 years, 3 months ago

John berrymen

Sahish Koli 4 years, 3 months ago

John Berrman

Dheeraj Kumar Vinayak 4 years, 3 months ago

John Berryman
  • 1 answers

Taheer Khan Taheer Khan 4 years, 3 months ago

The technological advancement gave birth to Green Revolution, White Revolution or Operation Flood. The Government abolished the Zamindari system. ... Kissan Credit Card (KCC), Personal Accident Insurance Scheme (PAIS) are some other schemes introduced by the Government of India for the benefit of the farmers.
  • 4 answers

Deepti Singh 4 years, 3 months ago

Hiiiii

Deepti Singh 4 years, 3 months ago

Thank you so much

Rajat Gupta 4 years, 3 months ago

Hiii

Ankita Yadav 4 years, 3 months ago

Hii

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App