Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Rudra Choudhary 8 years, 9 months ago
- 1 answers
Posted by Jahanvi Malhotra 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}let\,three\,numbers\,b/w\,1\,and\,256\,be\,{G_1},\,{G_2},\,and\,{G_3}{/tex}
{tex}1,{G_1},\,{G_2},\,{G_3},256\,are\,in\,GP{/tex}
{tex}a = 1{/tex}
{tex}l = 256{/tex}
{tex}a{r^4} = 256{/tex}
{tex}{r^4} = 256{/tex}
{tex}r = 4{/tex}
{tex}Now\,{G_1} = ar = 1 \times 4 = 4{/tex}
{tex}{G_2} = a{r^2} = 1 \times {\left( 4 \right)^2} = 16{/tex}
{tex}{G_3} = a{r^3} = 1 \times {\left( 4 \right)^3} = 64{/tex}
Posted by Tushar Choudhary 8 years, 9 months ago
- 0 answers
Posted by Tushar Choudhary 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}let\,{f^{ - 1}}\left( {27} \right) = x{/tex}
{tex} \Rightarrow f\left( x \right) = 27{/tex}
{tex} \Rightarrow {x^2} + 2 = 27{/tex}
{tex} \Rightarrow {x^2} = 25{/tex}
{tex} \Rightarrow x = \pm 5{/tex}
{tex}Hence{/tex}
{tex}{f^{ - 1}}\left( {27} \right) = \left\{ { - 5,5} \right\}{/tex}
Posted by Tushar Choudhary 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
There are no two numbers such that their arithmatic mean is 5 and G.M. is 9
Because we have know that
AM>GM for between any two numbers a and b.
here AM=5 and GM=9
9>5 or GM>AM which is invalid
Posted by Tushar Choudhary 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}Given\,that{/tex}
{tex}\tan A = {1 \over 3}\,and\,\tan B = {1 \over 2}{/tex}
{tex}Now\,\,\tan \left( {A + B} \right) = {{\tan A + \tan B} \over {1 - tan A \cdot \tan B}}{/tex}
{tex} = {{\left( {{1 \over 3} + {1 \over 2}} \right)} \over {\left( {1 - {1 \over 3} \cdot {1 \over 2}} \right)}}{/tex}
{tex} = {{\left( {{5 \over 6}} \right)} \over {\left( {{5 \over 6}} \right)}}{/tex}
{tex}\tan \left( {A + B} \right) = 1{/tex}
{tex}A + B = {45^ \circ }{/tex}
{tex}Now\,Sin2\left( {A + B} \right) = \sin \left( {2 \times {{45}^ \circ }} \right){/tex}
{tex} = \sin {90^ \circ }{/tex}
{tex}\sin 2\left( {A + B} \right) = 1{/tex}
Posted by Vivek Joshi 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}let\,two\,numbers\,be\,a\,and\,b{/tex}
{tex}A.M. = {{a + b} \over 2} = 10{/tex}
{tex}a + b = 20 \ldots \ldots \left( 1 \right){/tex}
{tex}G.M. = \sqrt {ab} = 8{/tex}
{tex}ab = 64 \ldots \ldots \left( 2 \right){/tex}
{tex}Now\,{\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab{/tex}
{tex} = {\left( {20} \right)^2} - 4 \times 64{/tex}
{tex} = 400 - 256{/tex}
{tex}{\left( {a - b} \right)^2} = 144{/tex}
{tex}a - b = \pm 12 \ldots \ldots \left( 3 \right){/tex}
{tex}solving\,\left( 1 \right)\,and\,\left( 3 \right){/tex}
{tex}a = 4,b = 16\,or\,a = 16,b = 4{/tex}
{tex}hence\,two\,numbers\,are\,4\,and\,16\,or\,16\,and\,4.{/tex}
Posted by Randeep Singh 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}let\,P\left( B \right) = x{/tex}
{tex}then\,P\left( A \right) = 6{\left[ {P\left( B \right)} \right]^2} = 6{x^2}{/tex}
{tex}Since\,A\,and\,B\,are\,mutually\,exclusive\,and\,exhaustive\,events{/tex}
{tex}therefore{/tex}
{tex}A \cup B = S{/tex}
{tex}P\left( {A \cup B} \right) = P\left( S \right){/tex}
{tex}P\left( {A \cup B} \right) = 1{/tex}
{tex}P\left( A \right) + P\left( B \right) = 1{/tex}
{tex}6{x^2} + x = 1{/tex}
{tex}6{x^2} + x - 1 = 0{/tex}
{tex}\left( {2x + 3} \right)\left( {3x - 1} \right) = 0{/tex}
{tex}x = - {2 \over 3},{1 \over 3}{/tex}
{tex}hence{/tex}
{tex}P\left( B \right) = {1 \over 3}{/tex}
{tex}P\left( A \right) = 6 \times {\left( {{1 \over 3}} \right)^2} = {2 \over 3}{/tex}
Posted by Innocent Geeta 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. By First Principle \(f'(x) = lim_{h\to 0} \space{ f(x+h) - f(x) \over h}\)
\(=> lim_{h\to 0} \space{ sin^2(x+h) - sin^2x \over h}\)
\(=> lim_{h\to 0} \space{ [sin(x+h) + sinx]\times [sin(x+h) - sinx]\over h}\) \([Using \space (a^2 - b^2) = (a+b)(a-b)]\)
\(=> lim_{h\to 0} \space{2 sin({x+h+x\over 2}) cos({x+h-x\over 2})\times 2cos({x+h+x\over 2}) sin({x+h-x\over 2})\over h}\)
\([Using \space sin a + sin b = 2 sin({a+b\over 2})cos ({a-b\over 2})\) and \( sin a - sin b = 2 cos({a+b\over 2})sin ({a-b\over 2})]\)
\(=> lim_{h\to 0} \space4{ sin({2x+h\over 2}) cos{h\over 2} \space cos({2x+h\over 2}) sin{h\over 2}\over h}\)
\(=> \space4 sin({2x+0\over 2}) cos{0\over 2} \space cos({2x+0\over 2}) lim_{h\to 0} {sin{h\over 2}\over {2h\over 2}}\)
\(=> 4 sin x. cos 0. cos x. lim_{{h\over 2}\to 0} {1\over 2}{sin{h\over 2}\over {h\over 2}}\) \([as \space h \to 0, then, {h\over 2}\to 0 ]\)
\(=> 4 sin x. cos x. {1\over 2}\) \([Using \space Identity, lim_{x \to 0 } \space {sinx \over x } = 1]\)
\(=> 2 sin x. cos x\)
Posted by Gurleen Kaur 8 years, 9 months ago
- 1 answers
Bindu Agarwal 8 years, 9 months ago
Total no. of tickets = 100
No. of ticets which are multiple of 5 = 20
NO. of tickets which are multiple of 7 = 14
NO.of tickets which are multiple of both i.e. multiple of 35:- 2
Therefore tickets which are multiple of 5 or 7 :- 20+14-2 = 32
Therefore probability :- 32/100 = 0.32
Posted by Gurleen Kaur 8 years, 9 months ago
- 1 answers
Posted by Gurleen Kaur 8 years, 9 months ago
- 1 answers
Bindu Agarwal 8 years, 9 months ago
f(x) = \((x^2 - 2x +3)/((x+4)(x-5))\)
So Since denominator should not be zero therefore x should not be -4 and 5
Hence domain x belongs to R - {-4,5}
Posted by Gurleen Kaur 8 years, 9 months ago
- 0 answers
Posted by Gurleen Kaur 8 years, 9 months ago
- 1 answers
Rashmi Bajpayee 8 years, 9 months ago
sin 2(a + b) = 1
2 tan(a + b)/{1 - tan2(a + b)} = 1
2[(tan a + tan b)/(1 - tana.tanb)]/[1 + {(tan a + tan b)/(1 - tana.tanb)}2] = 1
2{(1/3 + 1/2)/1 - 1/3 x 1/2)]/[1 +{(1/3 + 1/2)/(1 - tan a .tan b)}2] = 1
2[(5/6)/(5/6)]/[1 + {(5/6)/(5/6)}2] = 1
2/[1 + 1] = 1
2/2 = 1
1 = 1
Hence proved.
Posted by Gurleen Kaur 8 years, 9 months ago
- 1 answers
Rashmi Bajpayee 8 years, 9 months ago
tan 32o + tan 13o + tan 32o.tan13o = 1
tan 32<font size="2">o</font> + tan 13<font size="2">o</font> = 1 - tan 32<font size="2">o</font>.tan13<font size="2">o</font>
(tan 32<font size="2">o</font> + tan 13<font size="2">o)/(</font>1 - tan 32<font size="2">o</font>.tan13<font size="2">o</font><font size="2">) = 1</font>
<font size="2">tan (32o + 13o) = 1 [Since tan (A + B) = (tan A + tan B)/(1 - tan A. tan B)]</font>
<font size="2">tan 45o = 1</font>
<font size="2">1 = 1 [Since tan 45o = 1]</font>
<font size="2">Hence proved.</font>
Posted by Roma Lohia 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. \(Sin 780°.Sin120°+Cos240°.Sin390°={1\over 2}\)
Taking LHS
\(Sin 780°.Sin120°+Cos240°.Sin390°\)
=> \(Sin( 2\times 360°+60°).Sin(180°-60°)+Cos(180°+60°).Sin(360°+30°)\)
\(=> Sin( 4\pi+60°).Sin(\pi-60°)+Cos(\pi+60°).Sin(2\pi+30°)\)
=> \(Sin60°.Sin60°- Cos60°.Sin30°\)
=> \({\sqrt 3\over 2}.{\sqrt 3\over 2} - {1\over 2}.{1\over 2} = {3\over 4} - {1\over 4} \)
=> \({2\over 4 } = {1\over 2 } = RHS \)
Hence Proved
Posted by Mintu Rawat 8 years, 9 months ago
- 2 answers
Naveen Sharma 8 years, 9 months ago
Ans.You start by X = Y
it means (Y-X)= 0 And you can't divide anything by zero.
so dividing both sides by (Y-X) is illegal.
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. \(let \space (a+ib) = i^{3\over 2}\)
Squaring Both Sides, We get
\(=> a^2 +b^2.i^2 +2abi = i^3\)
\(=> a^2 -b^2 +2abi = -i \space \space \space \space \space \space \space \space \space \space [i^2 = -1]\)
On Comparing Both sides, We get
\(a^2-b^2 = 0 \space \space \space \space \space \space \space and \space \space \space \space \space \space 2ab =-1\)
=> \(a^2 = b^2 \space \space \space ...(1) \space \space \space \space \space and \space \space a = {-1\over 2b} \space \space \space \space \space ... (2)\)
Put value of a in (1)
=> \(({-1\over 2b})^2 = b^2 => {1\over 4b^2} = b^2 => {1\over 4} = b^4 \)
=> \(b^2 = {1\over 2} => b = {1\over \sqrt 2}\)
Put value of b in (2), we get \(a = {-1\over 2 \times {1\over \sqrt 2}} => a = {-1\over \sqrt2}\)
So
=> \({-1\over \sqrt2}+{1\over \sqrt 2}i = i^{3\over 2}\)
Posted by Dhruv Kumar 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. \(cos^4{\pi \over 8}+cos^4{3\pi \over 8}+cos^4{4\pi \over 8}+cos^4{7\pi \over 8} ={3\over 2}\)
Taking LHS,
\(cos^4{\pi \over 8}+cos^4{3\pi \over 8}+cos^4{4\pi \over 8}+cos^4{7\pi \over 8}\)
=> \(cos^4{\pi \over 8}+cos^4{3\pi \over 8}+cos^4[{{\pi} -{3\pi \over 8}}]+cos^4[{{\pi - {\pi \over 8}}}]\)
=> \(cos^4{\pi \over 8}+cos^4{3\pi \over 8}+({-cos{3\pi \over 8}})^4+({-cos{\pi \over 8}})^4\)
=> \(2[cos^4{\pi \over 8}+cos^4{3\pi \over 8}]\)
=> \(2[cos^4{\pi \over 8}+cos^4({\pi \over 2}-{\pi \over 8})]\)
=> \(2[cos^4{\pi \over 8}+sin^4{\pi \over 8}]\)
\(=> 2[(cos^2{\pi \over 8}+sin^2{\pi \over 8})^2 -2 cos^2{\pi \over 8}.sin^2{\pi \over 8}]\)
\(=> 2[(1)^2 -{1\over 2}(2 cos{\pi \over 8}.sin{\pi \over 8})^2]\)
\(=> 2[1 -{1\over 2}(sin {\pi \over 4})^2]\)
\(=> 2[1 -{1\over 2}\times {1\over 2}]\)
\(=> 2[1 -{1\over 4}] => 2 \times {3\over 4} = {3\over 2} = RHS \)
Hence Proved
Posted by Sourav Keshri 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. To Find Range,
\(Let \space y = {1 \over 1-x^2}\)
\(=> {1-x^2} = {1\over y} \)
\(=> x^2 ={1-{1\over y}}\)
\(=> x^2 = {y-1\over y}\)
\(=> x= {\sqrt{y-1\over y}}\)
\(Now,\space this \space is \space defined \space for \space {y-1\over y} \geq 0 \space except \space y \neq 0\)
\(y \in (-\infty , 0) \cup [1, \infty)\)
So Domain is \((-\infty , 0) \cup [1, \infty)\)
Posted by Vivek Kumar 8 years, 9 months ago
- 2 answers
Vivek Kumar 8 years, 9 months ago
It is wrong because we can't write tan3x = tan2x + tanx
The and of this question is
Tan(2x+x) = tan2
Rashmi Bajpayee 8 years, 9 months ago
tan 3x = tan 2x + tan x
tan (2x + x) = tan 2x + tan x
(tan 2x + tan x)/(1 - tan 2x.tanx x) = tan 2x + tan x
1 - tan 2x.tanx = 1
tan 2x. tan x = 0
tan 2x = 0 and tan x = 0
tan 2x = tan 0o and tan x = tan 0o
2x = 0<font size="2">o</font> and x = 0<font size="2">o</font>
x = 0<font size="2">o</font> and x = 0<font size="2">o</font>
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. we know
\(sin^3x = sinx(sin^2x)\)
\(=>{ sin x (1-cos2x)\over2}\)
\(=> {1\over 2} [{sin x -sin x cos2x}]\)
\(=> {1\over 2} [{ sin x - {1\over 2} [sin (x+2x) +sin (x-2x)]}]\)
\(=> {1\over 2} [{ sin x - {1\over 2} [sin 3x -sin x}]]\)
\(=> {1\over 2}\times{1\over 2} [{2 sin x - sin 3x +sin x}]\)
\(=> {3sin x - sin 3x \over4}\) (1)
Similarly,
\(=> sin^3({{2\pi\over 3} +x})= {3sin ({{2\pi\over 3 }+x })- sin (2\pi +3x )\over4}\)
\(=> {3[sin ({{2\pi\over 3 })cos x +sin xcos( {2\pi\over 3} })]- sin 3x\over4} \)
\(=> {3[{\sqrt3\over 2}cos x -{1\over 2}sin x)]- sin 3x\over4} \)
\(=> {3\sqrt3cos x -3sin x- 2sin 3x\over 8} \) (2)
Similarly,
\(=> sin^3({{4\pi\over 3} +x})= {3sin ({{4\pi\over 3 }+x })- sin (4\pi +3x )\over4}\)
\(=> {3[sin ({{4\pi\over 3 })cos x +sin xcos( {4\pi\over 3} })]- sin 3x\over4} \)
\(=> {3[(-{\sqrt3\over 2 })cos x +sin x({-1\over 2})]- sin 3x\over4} \)
\(=> {-3\sqrt3cos x -3sin x-2sin 3x\over 8} \) (3)
From (1),(2) and (3)
\(=> sin^3{x}+ sin^3({{2\pi\over 3} +x}) + sin^3({{4\pi\over 3} +x})\)
\(=>{3sin x - sin3x \over 4}+ {3\sqrt3cos x -3sin x- 2sin 3x\over 8} + {-3\sqrt3cos x -3sin x- 2sin 3x\over 8} \)
\(=>{1\over 8}[{6sin x - 2sin3x + 3\sqrt3cos x -3sin x- 2sin 3x -3\sqrt3cos x -3sin x- 2sin 3x}] \)
\(=>{1\over 8}[ {- 6sin 3x}] = {-6\over 8} {sin 3x} \)
\(=> {-3\over 4}{sin 3x} = RHS \)
Hence Proved
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans. \(\lim_{x \to 0} {tan x - sin x \over x^3}\)
=> \(\lim_{x \to 0} {{sin x\over cos x} - sin x \over x^3}\)
=> \(\lim_{x \to 0} {sin x({1\over cosx } - 1) \over x^3}\)
=> \(\lim_{x \to 0} {sin x(1 - cosx) \over x^3 . \space cos x }\)
=> \(\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{ 1 - cosx \over x^2 }}]\)
=> \(\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{ 2sin^2{x\over 2} \over x^2 }}]\)
=> \(2\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{ sin{x\over 2} \over x}.{ sin{x\over 2} \over x}}]\)
=> \(2\lim_{x \to 0} {[{1\over cos x}. {sin x \over x} .{1\over 2}{ sin{x\over 2} \over {x\over 2}}.{1\over 2}{ sin{x\over 2} \over {x\over 2}}}]\)
=> \(2[\lim_{x \to 0} {{1\over cos x}\times \lim_{x \to 0}{sin x \over x} \times \lim_{x \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}\times \lim_{x \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}}]\)
=> \(2[\lim_{x \to 0} {{1\over cos x}\times \lim_{x \to 0}{sin x \over x} \times \lim_{{x\over 2} \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}\times \lim_{{x\over2} \to 0}{1\over 2}{ sin{x\over 2} \over {x\over 2}}}]\) [as x tends to zero, x/2 also tends to zero]
=> \(2\times 1 \times 1 \times {1\over 2}\times {1\over 2} = {1\over 2}\)
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans.
\(Derivative \space of \space \sqrt [3] {tan x} \space by \space First \space Principle \space is \space given \space by : \)
\(=> f'(x) = lim_{h \to 0} \space {{ \sqrt [3]{tan(x+h)} - \sqrt [3] {tan x}} \over h}\)
\(=> lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h)\over cos(x+h)} - \sqrt [3] {sinx\over cosx }} \over h}\)
\(=> lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx \space cos(x+h) }} \over h {\sqrt [3]{cos(x+h) cosx} }}\)
\(=> lim_{h \to 0} {1\over {\sqrt [3]{cos(x+h) cosx} }} . \space lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx \space cos(x+h) }} \over h}\)
\(=> {1\over {\sqrt [3]{cos(x+0) cosx} }} . \space lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx \space cos(x+h) }} \over h}\)
\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0} \space {{ \sqrt [3]{sin(x+h) cos \space x} - \sqrt [3] {sinx\space cos(x+h)}}\over h} \times{ {[{(sin(x+h) cos \space x})^{2\over 3}}+{({sinx \space cos(x+h)})^{2\over3}}+\sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}]\over {[{(sin(x+h) cos \space x})^{2\over 3}}+{({sinx \space cos(x+h)})^{2\over3}}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}]}\)
\(\)\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0}{ \space {{sin(x+h) cos \space x - sinx\space cos(x+h)}} \over {h [{(sin(x+h) cos \space x})^{2\over 3}+({sinx \space cos(x+h)})^{2\over3}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}}]}\) \([a^3-b^3 = (a-b)(a^2+b^2+ab)]\)
\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0}{ \space {{sin(x+h -x )}} \over {h [{(sin(x+h) cos \space x})^{2\over 3}+({sinx \space cos(x+h)})^{2\over3}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}}]}\) \([sin (a-b) = sina.cosb - cos a. sin b ]\)
\(=> {1\over {\sqrt [3]{cos^2x } }}.\space lim_{h \to 0}{ \space {{sinh }} \over h} . \space lim_{h \to 0}{ { 1\over [{(sin(x+h) cos \space x})^{2\over 3}+({sinx \space cos(x+h)})^{2\over3}+ \sqrt [3]{sin(x+h)cosx. \space cox(x+h)sinx}]}}\)
\(=> {1\over cos^{2\over3}x} . 1. {1\over[(sin(x+0) cos \space x)^{2\over 3}+(sinx \space cos(x+0))^{2\over3}+ \sqrt [3]{sin(x+0)cosx. \space cox(x+0)sinx}]}\)
\(=> {1\over cos^{2\over3}x} . 1. {1\over[(sinx cos \space x)^{2\over 3}+(sinx \space cosx)^{2\over3}+ \sqrt [3]{sinx.cosx. \space cosx .sinx}]}\)
\(=> {1\over cos^{2\over3}x} . 1. {1\over[(sinx cos \space x)^{2\over 3}+(sinx \space cosx)^{2\over3}+ ({sinxcosx})^{2\over3}]}\)
\(=> {1\over cos^{2\over3}x} . {1\over3(sinx cos \space x)^{2\over 3}}\)
\(=> {1\over 3}{1\over cos^{4\over3}x. sin^{2\over 3}x}\)
\(=> {1\over 3}{{1\over cos^2x}\over ({ cos^{4\over3}x. sin^{2\over 3}x\over cos^2x})}\)
\(=> {1\over 3}{{sec^2x}\over ({ sin^{2\over 3}x\over cos^{2\over 3}x})}\)
\(=> {1\over 3}.{1\over { tan^{2\over 3}x}}.{sec^2x}\)
Posted by Vivek Kumar 8 years, 9 months ago
- 1 answers
Manish Gandhi 8 years, 9 months ago
Total arrangements possible are 7P7 = 7! = 5040
There are 2 vowels & 5 cosonants => there is only one way when the given condition will not meet & that is when both these vowels will occupy the odd places. Now, the no. of ways it is possible = 4P2 * 5P5 = 12 * 120 = 1440
=> Total words which can be formed in the required fashion are 5040-1440 = 3600 (Answer)
Posted by Naveen Ramdas 8 years, 9 months ago
- 1 answers
Shweta Gulati 8 years, 9 months ago
The question is : Prove that tan 4x= 4 tanx(1-tan2x)/1-6tan2x+tan4x
L.H.S.
tan 4x = tan 2(2x)
[We know that tan 2x = 2 tan x / 1 - tan 2 x]
= 2 tan 2x / 1 - tan2 (2x)
[now putting tan 2x = 2 tan x / 1 - tan2x]
= 2[2 tan x/1-tan2x] / 1 - [2 tan x / 1 - tan2x] 2
=[4 tan x / 1 - tan 2 x] / [1 - 4 tan 2 x / (1 - tan2 x)2]
=[4 tan x / 1 - tan 2 x] / [ (1- tan 2 x)2 - 4 tan 2 x / (1 - tan2 x)2]
= 4 tan x (1 - tan 2 x) / (1- tan 2 x)2 - 4 tan 2 x
= 4 tan x (1 - tan 2 x) / 1 - 2 tan2 x +tan 4 x - 4tan2 x
= 4 tan x (1 - tan 2 x) / 1 - 6 tan 2 x + tan 4 x
Posted by Aishu Mouli 8 years, 9 months ago
- 0 answers
Posted by Khushi Garg 8 years, 10 months ago
- 1 answers
Shweta Gulati 8 years, 10 months ago
sin5x + sinx = 2sin3x cos2x
cos5x - cosx = -2sin3x sin2x ..... use factorisation formulae of trigonometry.
So the fraction is 2sin3x(cos2x-1)/ - 2sin3xsin2x
= (1- cos2x)/sin2x
= 2(sin2x)/ 2sinxcosx
=sinx/cosx
=tanx.
Posted by Medhâvi Bhâtnâgar 8 years, 10 months ago
- 1 answers
Naveen Sharma 8 years, 10 months ago
Ans. If question is: log (log sin x1/2)
then according to Chain rule
\({dy\over dx} = { 1\over log( sin x^{1\over 2})} \times { 1 \over sin (x)^{1\over2}} \times cos (x)^{1\over 2}\times {1\over2\sqrt x}\)

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Naveen Sharma 8 years, 9 months ago
Ans. {tex}f(x) = {sinx\over sinx-cosx}{/tex}
Using quotient Rule, we get
{tex}f'(x) ={ {(sinx-cosx){d(sinx)\over dx}- sinx{d(sinx-cosx)\over dx}}\over (sinx-cosx)^2}{/tex}
{tex}=> { (sinx-cosx)cosx - sinx(cosx-(-sinx)) \over (sinx-cosx)^2}{/tex}
{tex}=> {sinx cosx - cos^2x -sinxcosx -sin^2x\over (sinx-cosx)^2}{/tex}
{tex}=> {- (cos^2x +sin^2x)\over (sinx-cosx)^2}{/tex}
{tex}=> {-1\over (sinx-cosx)^2}{/tex}
0Thank You