No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Naveen Sharma 8 years, 10 months ago

Ans. yx = xy

Take log both side, we get 

log yx = log xy

=> x log y = y log x

differentiate w.r.t x, we get

=> \(x {1\over y} {dy \over dx} + log y = y {1\over x} + log x {dy \over dx}\)

=> \( {x\over y} {dy \over dx} - log x {dy \over dx} = {y\over x} - log y\)

=> \(( {{x\over y} - log x} ) {dy \over dx} = {y\over x} - log y\)

=> \( {dy \over dx} = { ( { {y\over x} - log y } ) \over ( {{x\over y} - log x} )}\)

 

  • 1 answers

Naveen Sharma 8 years, 10 months ago

Ans. S= 8( 1 + 11 + 111 + 1111 + ..... Upto n terms  )

=> 8/9 (9 + 99 + 999 + 9999 + ……… upto n terms)

=> 8/9 [ (10-1) + (100-1) + (1000-1) + upto n terms]

=> 8/9 [ (10 + 100 + 1000 +  ...... n terms ) -(1+ 1 + 1 + ………… n terms)]

=> 8/9 [ 10(10n -1)/ (10-1) - n ]

=> 8/9 [ 10(10n-1)/9 - n]

=> 80(10n -1) /81 - 8n/9

  • 1 answers

Naveen Sharma 8 years, 10 months ago

Ans. f(x) = (x2+2x+1)/(x2-8x+12)

To find domain as the function is rational so its denominator must not be equal to zero(0).

x2-8x+12 = 0

=> x2-6x-2x+12=0

=> x(x-6)-2(x-6)=0

=> (x-6)(x-2)=0

=> x = 2,6

For these two values this function 'll become undefined. So  domain = R - {2,6}

To Find Range:

Let f(x)=y

=> (x2+2x+1)/(x2-8x+12) = y

=> x2+2x+1 = yx2+

-8xy+12y

=> yx2-8xy +12y -x2-2x-1 =0 

=> (y-1)x2 -(8y+2)x +(12y-1) = 0

Now D ≥ 0

=> b2 -4ac ≥ 0

=> (8y+2)2 - 4(y-1)(12y-1) ≥ 0 

= (8y+2)≥ 4(12y2 -13y +1)

=> 64y2 + 4 + 32y ≥ 48y2 -52y +4

=> 16y2 + 84y ≥  0

divide by 4

=> 4y2 + 21y ≥ 0

=> y(4y+21) ≥ 0

=> y ≥ 0 and 4y +21 ≥ 0

y ≥ 0  and y ≥ -21/4

So domain = R - (-21/4, 0)

  • 1 answers

Rashmi Bajpayee 8 years, 10 months ago

2tan x - cot x + 1 = 0

2tan x - 1/tan x + 1 = 0

2tan2x - 1 + tan x = 0

2tan2x + tan x - 1 = 0

2tan2x + 2tan x - tan x - 1 = 0

2tan x(tan x + 1) - 1 (tan x + 1) = 0

(tan x + 1)(2tan x - 1) = 0

tan x + 1 = 0 or 2tan x - 1 = 0

tan x = -1 or tan x = 1/2

x = 3π/4, 7π/4 or x = 3.6052, 0.4636

  • 2 answers

Rashmi Bajpayee 8 years, 10 months ago

Since the family of lines passing through the intersection of given lines is

(2x + 3y - 4) k(x - 5y + 7) = 0

This line meets x-axis i.e. y = 0, then

2x - 4 + k(x - 5y + 9) = 0

x = (4 - 7k)/(2 + k), which is the x-intercept.

Therefore, -4 = (4 - 7k)/(2 + k)

k = 4

Putting the value of k in the family equation

(2x + 3y - 4) + 4(x - 5y + 7) = 0

6x - 17y + 24 = 0, which is the required equation

Naveen Sharma 8 years, 10 months ago

Ans. 2x + 3y - 4 = 0   => 2x +3y = 4      ........(1)

x - 5y = 7    ........(2)

First we need to find intersection of the lines, For that solve these equation for x and y 
multiply equation (2) by 2, We get 

2x - 10y = 14      ......(3)

Subtract (1) from (3), we get 
-13y = 10   => y = -1013

Put value of y in (1), we get  x = 4113
 
Let the Equation of line in intercept form is 
xa + yb = 1

as x intecept is -4  and point 4113,-1013 satisfies this equation.

putting all Values, we get

4113×-4 + -1013b = 1

=> -4152 - 1 = 1013b

=> 1013b = -9352

=> b = -4093

So the Equation of line ll be 

x-4 - 93y40 = 1

 

 

  • 1 answers

Shweta Gulati 8 years, 10 months ago

In that case, post the question along with your answer and we will give the correct explanation for your wrong answers.! 

  • 1 answers

Naveen Sharma 8 years, 10 months ago

Ans. Infinity multiplied by zero is UNDEFINED. It is one of the 7 indeterminate forms in limits.

  • 1 answers

Rashmi Bajpayee 8 years, 10 months ago

Domain: If f : X Y is a function, then the set X is called the Domain and Y is called the co-domain of the function f.

               Example: Find domain of the function fx = 1x-5

                               The given function is not defined at x = 5.

                               Therefore, Domain of the given function is R - {5}, where R is set of all real numbers.

Range: The set of second elements of the ordered pairs defining a function is called the Range of the function.

            Example: Find the range of function fx = 1x-5

                            Now, y= 1x-5

                                  1y=x-5

                                   x = 5y+1y

                 Clearly, x is not defined when y = 0.

                 Therefore, Range of given funciton is R - {0}.

  • 1 answers

Neeraj Sharma 8 years, 11 months ago

Domain=R

Range=R

  • 1 answers

Neeraj Sharma 8 years, 11 months ago

2x-33x-7>0

Case-1: 

2x-3>0 and 3x-7>0

x>32 and x>73

x>73

Case-2

2x-3<0 and 3x-7<0

x<32 and x<73

x<32

-,3273, is the solution set

  • 2 answers

Manish Gandhi 8 years, 11 months ago

Proper Subset is a subset of the set which is having the elemnts from the Main set but not all. It is 2n - 1 in numbers.

Non Empty Proper subsets are all the subsets excluding the "Empty Subset" i.e. { }. It is 2n - 2 in numbers.

For e.g. If A = {1,2} then the number of subsets it has is 2n where n represents the no. of elements in that set means A will have 22 = 4 subsets which are {1}, {2}, {1,2} & { } sets. 

Now, here {1}, {2} & { } are the proper subsets & {1}, {2} are the non empty proper subsets.

Hope it clears better.

Naveen Sharma 8 years, 11 months ago

If A and B are two sets, then A is called the proper subset of B if A ⊆ B but B ⊇ A i.e., A ≠ B. The symbol ‘⊂’ is used to denote proper subset. Symbolically, we write A ⊂ B. 

E.g

A = {1, 2, 3, 4}

Here n(A) = 4

B = {1, 2, 3, 4, 5} 

Here n(B) = 5 

We observe that, all the elements of A are present in B but the element ‘5’ of B is not present in A. 

So, we say that A is a proper subset of B.
Symbolically, we write it as A ⊂ B

  • 1 answers

Ananth Krishnan 8 years, 11 months ago

cos x is the derivative of sin x

 

  • 1 answers

Naveen Sharma 8 years, 11 months ago

The derivative of sin(x) from first principles.

Setting aside the limit for now, our first step is to evaluate the fraction with f(x) = sin x.

On the right hand side we have a difference of 2 sines, so we apply the formula in (A2) above:

Simplifying the right hand side gives:

Now to put it all together and consider the limit:

We make use of (3), fraction on a fraction, to bring that 2 out front down to the bottom:

Now, the limit of a product is the product of the limits, so we can write this as:

 

Now, the first limit is in the form of Limit of sin θ/θ that we met in (A1) above.

We know it has value 1.

For the right hand limit, we simply obtain cos x.

So we can conclude that

  • 1 answers

Shruti Dadhwal 9 years ago

The sum of cubes of even numbers is equal to 2 n^2 (n+1)^2

So 2^3+ 4^3+ 6^3 +........+2n^2 = 2n^2(n+1)^2 

2 n^2 (n+1)^2  = k n^2 (n+1) ^2

Cancelling the common terms, we get 

k=2

  • 2 answers

Manish Gandhi 9 years ago

It is given that sum of n terms of an A.P. is 3n+ 5n

=>  S= 3(1)2 + 5(1) = 3 + 5 = 8 which will also be 1st term as "a1".

Further, S = 3 (2)+ 5 (2) = 12 + 10 = 22

And, we know, a= S- S= 22 - 8 = 14.... So, d = a- a= 14 - 8 = 6

Now, it's given that a= 164 => a1 + (m - 1)d = 164

8 + (m - 1)×6  = 164  => (m - 1)×6 = 156 => (m - 1) = 26 => m = 27 (Answer)

 

Rashmi Bajpayee 9 years ago

According to question,

S1 = a = 3(1)2 + 5 x 1 = 8

S<font size="2">2</font> = 3(2)<font size="2">2</font> + 5 x 2 = 22                                Then,         a2 = S2 - S1 = 22 - 8 = 14

S<font size="2">3</font> = 3(3)<font size="2">2</font> + 5 x 3 = 42                                Then,         a<font size="2">3</font> = S<font size="2">3</font> - S<font size="2">2</font> = 42 - 22 = 22

Therefore, d = 14 - 8 = 6

Now, am = a + (m - 1)d = 164

=>          164 = 8 + (m - 1)6

=>          156 = (m - 1)6

=>          26 = m - 1

=>          m = 27

  • 1 answers

Naveen Sharma 9 years ago

In the expension of (1+X)n, T(r+1) nCXr

Cofficient of (r+1)th term =  nCr

So Cofficient of 5th, 6th and 7th term ll be nC4 nCnC6 respectivily 

As it is given these terms are in AP

So,  2 * ( nC5 ) = nCnC6

(2 * n! ) / { (n-5)! 5!} =  (n! ) / { (n-4)! 4!}  + (n! ) / { (n-6)! 6!}

i think you can proceed from here .

 

 

  • 1 answers

Rashmi Bajpayee 9 years, 1 month ago

Given: b = (a + b)/2.            ........(i)

And.    c2 = bd                      ..........(ii)

And.    d = 2ce/(c + e).        ..........(iii)

Substituting values of b and d from eq.(i) and (iii), in eq.(ii),

c2 = {(a + c)/2} × {2ce/(c + e)}

c2 = (ace + c2e)/(c + e)

c3 = ace

c2 = ae

  • 1 answers

Rashmi Bajpayee 9 years, 1 month ago

L.H.S. = [1/(ab)1/2+a] + [1/(ab)<font size="2">1/2</font>+b] = [1/a1/2(a1/2 + b1/2)] + [1/b<font size="2">1/2</font>(a<font size="2">1/2</font> + b<font size="2">1/2</font>)]

           = (a1/2 + b1/2)/(ab)1/2(a<font size="2">1/2</font> + b<font size="2">1/2</font>)

           = 1/(ab)1/2

           = 1/g

           = R.H.S.

  • 1 answers

Rashmi Bajpayee 9 years, 1 month ago

L.H.S. = Cos(3π/4+x)-cos(3π/4-x)

= cos 3π/4 cos x - sin 3π/4 sin x - [cos 3π/4 cos x + sin 3π/4 sin x]

= cos 3π/4 cos x - sin 3π/4 sin x - cos 3π/4 cos x - sin 3π/4 sin x]

= -2sin 3π/4 sin x

= -2 x (1/√2) sin x

= -√2sin x

  • 1 answers

Manish Gandhi 9 years ago

Given: ( x + iy ) ( 3 – 4i ) = (5 + 12i )

Solution:

( x + iy ) = (5 + 12i ) / ( 3 – 4i )

By Rationalization, ( x + iy ) = (5 + 12i ) / ( 3 – 4i ) × ( 3 + 4i )/ ( 3 + 4i )

= (5 + 12i ) ( 3 + 4i ) / ( 3 + 4i ) ( 3 - 4i )

= (15 + 36i + 20i + 48i2/ 3^2 - (4i)2                       {( 3 + 4i ) ( 3 - 4i ) = 32 - (4i)2 because (a+b)(a-b)=a2 - b2}

= (15 - 48 + 56i) / 9 - 16i2                                        (48i^2 = -48 because i2 = -1)

= ( -33 + 56i) / 9 +16

= ( -33 + 56i) / 25

So, ( x + iy ) = -33/25 + 56i/25 

And, ( x - iy ) = -33/25 - 56i/25 

Now, ( x + iy )( x - iy ) = (-33/25 + 56i/25 ) (-33/25 - 56i/25 )

x+ y2 = (-33/25)2 -  (56i/25)2

= 1089/625 - 3136 i2/ 625

= 1089/625 + 3136 / 625

= 4225 / 625 = 6.76

Now Root of x+ ymeans root of 6.76 = 2.6 (Answer)

  • 1 answers

Naveen Sharma 9 years ago

The Binomial Theorem is a quick way (okay, it's a less slow way) of expanding (or multiplying out) a binomial expression that has been raised to some (generally inconveniently large) power.

  • 1 answers

Naveen Sharma 9 years ago

total number of terms in expansion =  (power of expression +1)

so in this expension total number of terms ll be 13 and middle term ll be 7th term

T12C({x)2}(yx)6

 

  • 1 answers

Manish Gandhi 9 years ago

Given:

n (U) = 100, n (H - G - S) = 15, n (S - G - H) = 12, n (G - H - S) = 8, n (G  H) = 40, n (G  S) = 20, n (H  S) = 10, n (G) = 65

Solution:

n(G) = n (G - H - S) + n (G  H) + n (G  S) - n (G  S  H)

65 = 8 + 40 + 20 - n (G  S  H)

n (G  S  H) = 68 - 65 = 3

Similarly, n (H) = n (H - G - S) + n (H  S) + n (G  H) - n (G  S  H)

n (H) = 15 + 10 + 40 - 3 = 65 - 3 = 62 (Answer to part a)

Similarly, n (S) = n (S - G - H) + n (H  S) + n (G  S) - n (G  S  H)

n (S) = 12 + 10 + 20 - 3 = 39 (Answer to part b)

Also, we know n (G  S  H) = n (G) + n (S) + n (H) - n (G  S) - n (H  S) - n (G  H) + n (G  S  H)

n (G  S  H) = 65 + 39 + 62 - 20 - 10 - 40 + 3 = 169 - 70 = 99

Also, n (G  S  H)' = n (U) - (G  S  H) = 100 - 99 = 1 (Answer to part c)

  • 1 answers

Rashmi Bajpayee 9 years, 2 months ago

dx = sin x / 2cos2x = 1/2[sin x - sec2x]               [By Product rule]

dx = 1/2[sin x.2sec x.sec x.tan x + sec2x.cos x]

dx = 1/2[sin x.2sec2x.tan x + sec x]

dx = (1/2) sec x[2sin2x.sec2x + 1] = (1/2) sec x[2tan2x + 1] = 1/(2cos x) [(2sin2x/cos2x) + 1]

dx = 1/(2cos3 x) [2sin2x + 1 - sin2x ] = 1/(2cos3 x) [sin2x + 1]

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App