No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Minakshi Kapoor 8 years, 5 months ago

Knowledge in statistics provides us with the necessary tools and conceptual foundations in quantitative reasoning to extract information intelligently from this sea of data.

Rashmi Bajpayee 8 years, 5 months ago

{tex}\sin 2x + \cos x = 0{/tex}

=>     {tex}\sin 2x = - \cos x{/tex}

=>     {tex}2\sin x.\cos x = - \cos x{/tex}

=>     {tex}\sin x = - {1 \over 2}{/tex}

=>     {tex}\sin x = \sin \left( {\pi + {\pi \over 6}} \right){/tex}

=>     {tex}\sin x = \sin {{7\pi } \over 6}{/tex}

=>     {tex}x = {{7\pi } \over 6} = {210^ \circ }{/tex}

  • 1 answers

Naveen Sharma 8 years, 5 months ago

Ans. Given :  {tex}sin X = {1\over \sqrt 5}{/tex}{tex}sin Y = {1\over \sqrt {10}}{/tex}

X = {tex}sin^{-1}({1\over \sqrt 5}){/tex}

Y = {tex}sin^{-1}({1\over \sqrt {10}}){/tex}

=> X+Y = {tex}sin^{-1}({1\over \sqrt 5}) + sin^{-1}({1\over \sqrt {10}}){/tex}

{tex}[using \ \ sin^{-1} a + sin^{-1} b = sin^{-1}(a\sqrt{1-b^2}+b\sqrt{1-a^2})]{/tex}

{tex}=> X+Y = sin^{-1}\left ( {1\over \sqrt 5} \sqrt {1- {1\over 10}} + {1\over \sqrt {10}} \sqrt {1- {1\over 5}}\right ){/tex} 

{tex}=> X+Y = sin^{-1}\left ( {3\over \sqrt {50}} + {2\over \sqrt {50}} \right ){/tex}

{tex}=> X+Y = sin^{-1}\left ( {5\over 5\sqrt 2} \right ){/tex}

{tex}=> X+Y = sin^{-1}\left ( {1\over \sqrt 2} \right ){/tex}

{tex}=> X+Y = sin^{-1}\left ( sin {\pi \over 4} \right ){/tex}

{tex}=> X+Y = {\pi \over 4} {/tex}

Hence Proved

  • 1 answers

Rashmi Bajpayee 8 years, 5 months ago

{tex}\cos ec{\rm{A}} + \sec {\rm{A}} = \cos ec{\rm{B}} + \sec {\rm{B}}{/tex}

=>     {tex}\cos ec{\rm{A}} - \cos ec{\rm{B}} = \sec {\rm{A}} - \sec {\rm{B}}{/tex}

=>     {tex}{1 \over {\sin {\rm{A}}}} - {1 \over {\sin {\rm{B}}}} = {1 \over {\cos {\rm{A}}}} - {1 \over {\cos {\rm{B}}}}{/tex}

=>     {tex}{{\sin {\rm{B}} - \sin {\rm{A}}} \over {\sin {\rm{A}}{\rm{.}}\sin {\rm{B}}}} = {{\cos {\rm{B}} - \cos {\rm{A}}} \over {\cos {\rm{A}}{\rm{.cos B}}}}{/tex}

=>     {tex}{{2\sin {{{\rm{B}} - {\rm{A}}} \over 2}\cos {{{\rm{B}} + {\rm{A}}} \over 2}} \over {\sin {\rm{A}}{\rm{.}}\sin {\rm{B}}}} = {{2\sin {{{\rm{B}} - {\rm{A}}} \over 2}\sin {{{\rm{B}} + {\rm{A}}} \over 2}} \over {\cos {\rm{A}}{\rm{.cos B}}}}{/tex}

=>     {tex}{{\cos {{{\rm{B}} + {\rm{A}}} \over 2}} \over {\sin {{{\rm{B}} + {\rm{A}}} \over 2}}} = {{\sin {\rm{A}}{\rm{.}}\sin {\rm{B}}} \over {\cos {\rm{A}}{\rm{.cos B}}}}{/tex}

=>     {tex}\cot {{{\rm{B}} + {\rm{A}}} \over 2} = \tan {\rm{A}}{\rm{.}}\tan {\rm{B}}{/tex}

=>     {tex}\tan {\rm{A}}{\rm{.}}\tan {\rm{B = }}\cot {{{\rm{B}} + {\rm{A}}} \over 2}{/tex}

 

  • 0 answers
  • 2 answers

Nidhi Pal 5 years, 9 months ago

I can't understand

Rashmi Bajpayee 8 years, 5 months ago

L.H.S.

{tex}\left( {1 + \cot {\rm{A}} + \tan {\rm{A}}} \right)\left( {\sin {\rm{A}} - \cos {\rm{A}}} \right){/tex}

= {tex}\left( {1 + {{\cos {\rm{A}}} \over {\sin {\rm{A}}}} + {{\sin {\rm{A}}} \over {\cos {\rm{A}}}}} \right)\left( {\sin {\rm{A}} - \cos {\rm{A}}} \right){/tex}

= {tex}{{\left( {\sin {\rm{A}} - \cos {\rm{A}}} \right)\left( {\sin {\rm{AcosA}} + {{\sin }^2}{\rm{A}} + {{\cos }^2}{\rm{A}}} \right)} \over {\sin {\rm{AcosA}}}}{/tex}

= {tex}{{{{\sin }^3}{\rm{A}} - {{\cos }^3}{\rm{A}}} \over {\sin {\rm{AcosA}}}}{/tex}

= {tex}{{{{\sin }^2}{\rm{A}}} \over {{\rm{cosA}}}} - {{{{\cos }^2}{\rm{A}}} \over {\sin {\rm{A}}}}{/tex}

= {tex}{1 \over {{\rm{cosA}}}}.{{{{\sin }^2}{\rm{A}}} \over 1} - {1 \over {{\rm{sinA}}}}.{{{{\cos }^2}{\rm{A}}} \over 1}{/tex}

= {tex}{{\sec {\rm{A}}} \over {\cos e{c^2}{\rm{A}}}} - {{\cos ec{\rm{A}}} \over {{{\sec }^2}{\rm{A}}}}{/tex}

= R.H.S.

  • 1 answers

Rashmi Bajpayee 8 years, 5 months ago

Let the Sum of nth term of first AP be {tex}{{\rm{S}}_n}{/tex} and that of second term be S'n.

=>     {tex}{{{n \over 2}\left[ {2a + \left( {n - 1} \right)d} \right]} \over {{n \over 2}\left[ {2a' + \left( {n - 1} \right)d'} \right]}} = {{5n + 4} \over {9n + 6}}{/tex}

=>     {tex}{{2a + \left( {n - 1} \right)d} \over {2a' + \left( {n - 1} \right)d'}} = {{5n + 4} \over {9n + 6}}{/tex}

Putting n = 35, we get

=>     {tex}{{2a + \left( {35 - 1} \right)d} \over {2a' + \left( {35 - 1} \right)d'}} = {{5 \times 35 + 4} \over {9 \times 35 + 6}}{/tex}

=>     {tex}{{2a + 34d} \over {2a' + 34d'}} = {{175 + 4} \over {315 + 6}}{/tex}

=>     {tex}{{a + 17d} \over {a' + 17d'}} = {{179} \over {321}}{/tex}

=>     {tex}{{a + \left( {18 - 1} \right)d} \over {a' + \left( {18 - 1} \right)d'}} = {{179} \over {321}}{/tex}

=>     {tex}{{{a_{18}}} \over {a{'_{18}}}} = {{179} \over {321}}{/tex}

Therefore, the ratio of 18th term of two APs is 179 : 321.

  • 1 answers

Payal Singh 8 years, 5 months ago

Radian measure = {tex}{\pi\over 180}\times degree\ measure{/tex}

So, 

Degree measure = {tex}{18\over \pi}\times radian \ measure{/tex}

=> Degree measure = {tex}{180\over 22}\times 7\times 4{/tex}

= 229.09 

  • 2 answers

James Black 7 years, 6 months ago

Cos5θ=16〖Sin〗^5 θ-20〖Sin〗^3 θ+5cosθ

Rashmi Bajpayee 8 years, 6 months ago

{tex}{\cos ^2}2{\rm{A}} + {\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) + {\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right) = {3 \over 2}{/tex}

We know that

{tex}{\cos ^2}{\rm{A}} = {{1 + \cos 2{\rm{A}}} \over 2}{/tex}                                    ..............(i)

{tex}{\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) = {{1 + \cos \left( {{\rm{2A}} + {{240}^ \circ }} \right)} \over 2}{/tex}         ..............(ii)

And   {tex}{\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right) = {{1 + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}..............(iii)

Adding all these three equations,

{tex}{\cos ^2}2{\rm{A}} + {\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) + {\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right){/tex} = {tex}{3 \over 2} + {{1 + \cos 2{\rm{A}}} \over 2} + {{1 + \cos \left( {{\rm{2A + }}{{240}^ \circ }} \right)} \over 2} + {{1 + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}

= {tex}{{3 + 1 + \cos 2{\rm{A + }}1 + \cos \left( {{\rm{2A + }}{{240}^ \circ }} \right) + 1 + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}

= {tex}{{3 + 3 + \cos 2{\rm{A}} + \cos \left( {{\rm{2A + }}{{240}^ \circ }} \right) + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}

= {tex}{{3 + 3 + \cos 2{\rm{A}} + 2\cos 2{\rm{A}}.\cos {{240}^ \circ }} \over 2}{/tex}

= {tex}{{3 + 3 + \cos 2{\rm{A}} - \cos 2{\rm{A}}} \over 2}{/tex}

= {tex}{6 \over 2}{/tex}

{tex}\Rightarrow{/tex} {tex}{\cos ^2}2{\rm{A}} + {\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) + {\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right) = {3 \over 2}{/tex}

  • 1 answers

Rashmi Bajpayee 8 years, 6 months ago

Q.2     {tex}\sin 2\theta = {{2\tan \theta } \over {1 + {{\tan }^2}\theta }}{/tex}

Since {tex}\theta {/tex} is in third quadrant, therefore value of tangent is positive.

{tex}\Rightarrow{/tex}     {tex}\sin 2\theta = {{2 \times {{24} \over 7}} \over {1 + {{\left( {{{24} \over 7}} \right)}^2}}}{/tex}

{tex}\Rightarrow{/tex}     {tex}\sin 2\theta = {{{{48} \over 7}} \over {1 + {{576} \over {49}}}}{/tex}

{tex}\Rightarrow{/tex}     {tex}\sin 2\theta = {{48} \over 7} \times {{49} \over {625}} = {{336} \over {625}}{/tex}

  • 1 answers

Rashmi Bajpayee 8 years, 6 months ago

{tex}4{\cos ^2}\theta - 4\sin \theta = 1{/tex}

=>          {tex}4\left( {1 - {{\sin }^2}\theta } \right) - 4\sin \theta = 1{/tex}

=>          {tex}4 - 4{\sin ^2}\theta - 4\sin \theta = 1{/tex}

=>          {tex} - 4{\sin ^2}\theta - 4\sin \theta + 4 - 1 = 0{/tex}

=>          {tex}4{\sin ^2}\theta + 4\sin \theta - 3 = 0{/tex}

=>          {tex}4{\sin ^2}\theta + 6\sin \theta - 2\sin \theta - 3 = 0{/tex}

=>          {tex}2\sin \theta \left( {2\sin \theta + 3} \right) - 1\left( {2\sin \theta + 3} \right) = 0{/tex}

=>          {tex}\left( {2\sin \theta + 3} \right)\left( {2\sin \theta - 1} \right) = 0{/tex}

=>          {tex}2\sin \theta + 3 = 0{/tex}  or   {tex}2\sin \theta - 1 = 0{/tex}

=>          {tex}\sin \theta = {{ - 3} \over 2}{/tex}  or  {tex}\sin \theta = {1 \over 2}{/tex}

But {tex}\theta {/tex} is positive, therefore, taking

{tex}\sin \theta = {1 \over 2}{/tex}

=>        {tex}\sin \theta = \sin {30^ \circ }{/tex}

=>        {tex}\theta = {30^ \circ }{/tex}

  • 1 answers

Rasmi Rv 8 years, 6 months ago

Let {tex}-3i= 0-3i=r\left( cos\theta +isin\theta \right) {/tex}

Comparing real and imaginary parts

{tex}rcos\theta =0.......................\left( i \right) \\ rsin\theta =-3....................\left( ii \right) \\ {/tex}

Squaring and adding equations (i) and (ii)

{tex}{ r }^{ 2 }{ cos }^{ 2 }\theta +{ { r }^{ 2 } }sin^{ 2 }\theta =9\\ \Rightarrow { r }^{ 2 }=9\quad \quad \quad \quad \quad \quad \quad \left( { \because cos }^{ 2 }\theta +sin^{ 2 }\theta =1 \right) {/tex}

{tex}\Rightarrow r=3{/tex}

Substituting {tex}r=3{/tex} in equations (i) and (ii), we get 

{tex}cos\theta =0\quad and\quad sin\theta =-1\\ {/tex}

So {tex}\theta {/tex} lies in fourth quadrant 

{tex}\therefore \quad \theta =\frac { -\Pi }{ 2 } {/tex}     [ in the fourth quarant format of amplitude or principal argument is {tex}-\theta {/tex} (where {tex}\theta =\frac { \Pi }{ 2 } {/tex} ) ]

{tex}-3i=3\left( cos\left( \frac { -\Pi }{ 2 } \right) +isin\left( \frac { -\Pi }{ 2 } \right) \right) \\ \Rightarrow -3i=3\left( cos\left( \frac { \Pi }{ 2 } \right) -isin\left( \frac { \Pi }{ 2 } \right) \right) \quad \quad \left[ \because cos\left( -\theta \right) =cos\theta \quad ,sin\left( -\theta \right) =-sin\theta \right] {/tex}

 

  • 1 answers

Naveen Sharma 8 years, 7 months ago

Ans. {tex}f(x) = {1\over (x-4)(x-1)}{/tex}

 We need to find where the expression is undefined. These values are not part of the domain.

For the above function, if it is defined then

{tex}(x-4)(x-1) \ne 0 {/tex}

=> {tex}x-4\ne 0 \space and\space x-1\ne 0 {/tex}

{tex}x\ne 4 \space and\space x\ne 1 {/tex}

So Domain of f(x) = R - {1,4}

  • 1 answers

Neeraj Sharma 8 years, 7 months ago

{tex}\left( {x - 4} \right)\left( {x - 1} \right) = {x^2} - 5x + 4{/tex} is a polynomial.

we know that Polynomial is defined for every real x.

hence Domain of {tex}\left( {x - 4} \right)\left( {x - 1} \right){/tex}=R

  • 1 answers

Dharmendra Kumar 8 years, 5 months ago

1) B={2,3,5,7,11,...} since prime or positive factors of prime numbers are itself.

2)C={0,1} since C={x: x2=x where x belongs to R}

                               ={x: x2-x=0 where x belongs to R}

                               ={x: x(x-1)=0 where x belongs to R}

                               ={x: x=0 and x-1=0 where x belongs to R}

                               ={x: x=0 and x=1where x belongs to R}

                               ={0,1}

 

  • 1 answers

Neeraj Sharma 8 years, 7 months ago

Prime numbers have only two factors i.e. 1 and itself

{tex}B = \left\{ {1,x} \right\}{/tex}

As we know

 {tex}\eqalign{ & {\left( 0 \right)^2} = 0 \cr & {\left( 1 \right)^2} = 1 \cr} {/tex}

{tex}C = \left\{ {0,1} \right\}{/tex}

  • 1 answers

Abhishek Bhardwaj 8 years, 8 months ago

X÷1+x*

2x^

 

  • 1 answers

Naveen Sharma 8 years, 8 months ago

Ans. Given: f(x + y) = f(x)*f (y) for all x, y {tex}\in {/tex} N ......(1)

{tex}\displaystyle\sum_{i=1}^{n} f(x) = 120 \space \space ............(2){/tex}

f(1) = 3

Taking x = y = 1 in (1), we obtain

f(1 + 1) = f (2) = f (1) f (1) = 3 × 3 = 9

Similarly, f(3) = f (1 + 2) = f (1) f (2) = 3 × 9 = 27

f(4) = f(1 + 3) = f (1) f (3) = 3 × 27 = 81

f(1), f (2), f (3), …, that is 3, 9, 27, …, forms a G.P.

First term is 3 and common ratio is also 3. 

Also we know 

{tex}=> S_n = {a(r^n -1)\over r - 1}{/tex}       

{tex}=> S_n = {3(3^n -1)\over 3 - 1}{/tex}  .................... (3)

From (2) and (3), We get 

{tex}=> 120 = {3(3^n -1)\over 3 - 1}{/tex}

{tex}=> 120 = {3(3^n -1)\over 2}{/tex}

{tex}=> 80 = 3^n -1{/tex}

{tex}=> 81 = 3^n {/tex}

{tex}=> 3^4 = 3^n {/tex}

n = 4,

So Value of n = 4

  • 1 answers

Arun Soni 8 years, 5 months ago

Four cards can be selected from 52 cards in 52C4 ways. 
Now, there are four suits, e.g. club, spade, heart and diamond each of 13 cards. 
So total number of ways of getting all the four cards of the same suit:
⇒ 13C4+13C4+13C4+13C4=4×13C4

{tex}\therefore{/tex} the probability of getting 4 cards from the same suit={tex}\frac{{4{ \times ^{13}}{C_4}}}{{^{52}{C_4}}}{/tex}

{tex}\frac{{198}}{{20825}}{/tex}

  • 1 answers

Naveen Sharma 8 years, 9 months ago

Ans. 

Let {tex}\sqrt {-7-24i} = x+yi{/tex}

Squaring Both Sides,

=> -7-24i = x2 - y+ 2xyi

on comparing, we get

=> x2 - y= -7   ……(1)

and 2xy = -24 ………(2)

We know

(x2+y2)= (x2-y2)2 + 4x2y2

=> (x2+y2)2 = 49 + 576

=> (x2+y2)= 625

=> x2+ y2 = 25  …………(3)

solving (2) and (3), We get

{tex}x = \pm 3 \space \space \space and \space y =\pm4{/tex}

from (2) as product of xy is -ve, so it means x and y are of opposite sign.

So, when x = 3, y = -4

when x = -3, y = 4

Therefore, 

{tex}\sqrt {-7-24i} = \pm (3-4i){/tex}

  • 1 answers

Neeraj Sharma 8 years, 9 months ago

{tex}{\left( {\sqrt {{x \over 3}} + {3 \over {2{x^2}}}} \right)^{10}}{/tex}

{tex}{T_{r + 1}}{ = ^{10}}{C_r}{\left( {\sqrt {{x \over 3}} } \right)^{10 - r}}{\left( {{3 \over {2{x^2}}}} \right)^r}{/tex}

{tex}{ = ^{10}}{C_r}{\left( x \right)^{5 - {r \over 2} - 2r}}{\left( 3 \right)^{ - 5 + {r \over 2} + r}}{\left( 2 \right)^{ - r}}{/tex}

{tex}{ = ^{10}}{C_r}{\left( x \right)^{{{10 - 5r} \over 2}}}{\left( 3 \right)^{{{3r - 10} \over 2}}}{\left( 2 \right)^{ - r}}{/tex}

{tex}for\,independent\,of\,x{/tex}

{tex}{\left( x \right)^{{{10 - 5r} \over 2}}} = {x^0}{/tex}

{tex}{{10 - 5r} \over 2} = 0{/tex}

{tex}10 - 5r = 0{/tex}

{tex}r = 2{/tex}

{tex}independent\,term\,{T_3}{ = ^{10}}{C_2}{\left( 3 \right)^{ - 2}}{\left( 2 \right)^{ - 2}}{/tex}

{tex} = {{10!} \over {2!8!}} \times {1 \over {36}}{/tex}

{tex} = {{10 \times 9} \over {2 \times 36}}{/tex}

{tex} = {5 \over 4}{/tex}

  • 1 answers

Neeraj Sharma 8 years, 9 months ago

{tex}let\,y = \sin 2x{/tex}

{tex}differentiating\,with\,respect\,to\,x{/tex}

{tex}{{dy} \over {dx}} = {d \over {dx}}\left( {\sin 2x} \right){/tex}

{tex} = \cos 2x{d \over {dx}}\left( {2x} \right){/tex}

{tex} = 2\cos 2x{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App