Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Akshat Jain 8 years, 5 months ago
- 2 answers
Rashmi Bajpayee 8 years, 5 months ago
{tex}\sin 2x + \cos x = 0{/tex}
=> {tex}\sin 2x = - \cos x{/tex}
=> {tex}2\sin x.\cos x = - \cos x{/tex}
=> {tex}\sin x = - {1 \over 2}{/tex}
=> {tex}\sin x = \sin \left( {\pi + {\pi \over 6}} \right){/tex}
=> {tex}\sin x = \sin {{7\pi } \over 6}{/tex}
=> {tex}x = {{7\pi } \over 6} = {210^ \circ }{/tex}
Posted by Gourav Pandey 8 years, 5 months ago
- 1 answers
Naveen Sharma 8 years, 5 months ago
Ans. Given : {tex}sin X = {1\over \sqrt 5}{/tex}, {tex}sin Y = {1\over \sqrt {10}}{/tex}
X = {tex}sin^{-1}({1\over \sqrt 5}){/tex}
Y = {tex}sin^{-1}({1\over \sqrt {10}}){/tex}
=> X+Y = {tex}sin^{-1}({1\over \sqrt 5}) + sin^{-1}({1\over \sqrt {10}}){/tex}
{tex}[using \ \ sin^{-1} a + sin^{-1} b = sin^{-1}(a\sqrt{1-b^2}+b\sqrt{1-a^2})]{/tex}
{tex}=> X+Y = sin^{-1}\left ( {1\over \sqrt 5} \sqrt {1- {1\over 10}} + {1\over \sqrt {10}} \sqrt {1- {1\over 5}}\right ){/tex}
{tex}=> X+Y = sin^{-1}\left ( {3\over \sqrt {50}} + {2\over \sqrt {50}} \right ){/tex}
{tex}=> X+Y = sin^{-1}\left ( {5\over 5\sqrt 2} \right ){/tex}
{tex}=> X+Y = sin^{-1}\left ( {1\over \sqrt 2} \right ){/tex}
{tex}=> X+Y = sin^{-1}\left ( sin {\pi \over 4} \right ){/tex}
{tex}=> X+Y = {\pi \over 4} {/tex}
Hence Proved
Posted by Himanshu Goyal 8 years, 5 months ago
- 1 answers
Rashmi Bajpayee 8 years, 5 months ago
{tex}\cos ec{\rm{A}} + \sec {\rm{A}} = \cos ec{\rm{B}} + \sec {\rm{B}}{/tex}
=> {tex}\cos ec{\rm{A}} - \cos ec{\rm{B}} = \sec {\rm{A}} - \sec {\rm{B}}{/tex}
=> {tex}{1 \over {\sin {\rm{A}}}} - {1 \over {\sin {\rm{B}}}} = {1 \over {\cos {\rm{A}}}} - {1 \over {\cos {\rm{B}}}}{/tex}
=> {tex}{{\sin {\rm{B}} - \sin {\rm{A}}} \over {\sin {\rm{A}}{\rm{.}}\sin {\rm{B}}}} = {{\cos {\rm{B}} - \cos {\rm{A}}} \over {\cos {\rm{A}}{\rm{.cos B}}}}{/tex}
=> {tex}{{2\sin {{{\rm{B}} - {\rm{A}}} \over 2}\cos {{{\rm{B}} + {\rm{A}}} \over 2}} \over {\sin {\rm{A}}{\rm{.}}\sin {\rm{B}}}} = {{2\sin {{{\rm{B}} - {\rm{A}}} \over 2}\sin {{{\rm{B}} + {\rm{A}}} \over 2}} \over {\cos {\rm{A}}{\rm{.cos B}}}}{/tex}
=> {tex}{{\cos {{{\rm{B}} + {\rm{A}}} \over 2}} \over {\sin {{{\rm{B}} + {\rm{A}}} \over 2}}} = {{\sin {\rm{A}}{\rm{.}}\sin {\rm{B}}} \over {\cos {\rm{A}}{\rm{.cos B}}}}{/tex}
=> {tex}\cot {{{\rm{B}} + {\rm{A}}} \over 2} = \tan {\rm{A}}{\rm{.}}\tan {\rm{B}}{/tex}
=> {tex}\tan {\rm{A}}{\rm{.}}\tan {\rm{B = }}\cot {{{\rm{B}} + {\rm{A}}} \over 2}{/tex}
Posted by Prerna Bhandari 8 years, 5 months ago
- 0 answers
Posted by Himanshu Goyal 8 years, 5 months ago
- 2 answers
Rashmi Bajpayee 8 years, 5 months ago
L.H.S.
{tex}\left( {1 + \cot {\rm{A}} + \tan {\rm{A}}} \right)\left( {\sin {\rm{A}} - \cos {\rm{A}}} \right){/tex}
= {tex}\left( {1 + {{\cos {\rm{A}}} \over {\sin {\rm{A}}}} + {{\sin {\rm{A}}} \over {\cos {\rm{A}}}}} \right)\left( {\sin {\rm{A}} - \cos {\rm{A}}} \right){/tex}
= {tex}{{\left( {\sin {\rm{A}} - \cos {\rm{A}}} \right)\left( {\sin {\rm{AcosA}} + {{\sin }^2}{\rm{A}} + {{\cos }^2}{\rm{A}}} \right)} \over {\sin {\rm{AcosA}}}}{/tex}
= {tex}{{{{\sin }^3}{\rm{A}} - {{\cos }^3}{\rm{A}}} \over {\sin {\rm{AcosA}}}}{/tex}
= {tex}{{{{\sin }^2}{\rm{A}}} \over {{\rm{cosA}}}} - {{{{\cos }^2}{\rm{A}}} \over {\sin {\rm{A}}}}{/tex}
= {tex}{1 \over {{\rm{cosA}}}}.{{{{\sin }^2}{\rm{A}}} \over 1} - {1 \over {{\rm{sinA}}}}.{{{{\cos }^2}{\rm{A}}} \over 1}{/tex}
= {tex}{{\sec {\rm{A}}} \over {\cos e{c^2}{\rm{A}}}} - {{\cos ec{\rm{A}}} \over {{{\sec }^2}{\rm{A}}}}{/tex}
= R.H.S.
Posted by Umang Kumar 8 years, 5 months ago
- 1 answers
Rashmi Bajpayee 8 years, 5 months ago
Let the Sum of nth term of first AP be {tex}{{\rm{S}}_n}{/tex} and that of second term be S'n.
=> {tex}{{{n \over 2}\left[ {2a + \left( {n - 1} \right)d} \right]} \over {{n \over 2}\left[ {2a' + \left( {n - 1} \right)d'} \right]}} = {{5n + 4} \over {9n + 6}}{/tex}
=> {tex}{{2a + \left( {n - 1} \right)d} \over {2a' + \left( {n - 1} \right)d'}} = {{5n + 4} \over {9n + 6}}{/tex}
Putting n = 35, we get
=> {tex}{{2a + \left( {35 - 1} \right)d} \over {2a' + \left( {35 - 1} \right)d'}} = {{5 \times 35 + 4} \over {9 \times 35 + 6}}{/tex}
=> {tex}{{2a + 34d} \over {2a' + 34d'}} = {{175 + 4} \over {315 + 6}}{/tex}
=> {tex}{{a + 17d} \over {a' + 17d'}} = {{179} \over {321}}{/tex}
=> {tex}{{a + \left( {18 - 1} \right)d} \over {a' + \left( {18 - 1} \right)d'}} = {{179} \over {321}}{/tex}
=> {tex}{{{a_{18}}} \over {a{'_{18}}}} = {{179} \over {321}}{/tex}
Therefore, the ratio of 18th term of two APs is 179 : 321.
Posted by Pfff Xy 8 years, 5 months ago
- 0 answers
Posted by Unique R 8 years, 5 months ago
- 1 answers
Payal Singh 8 years, 5 months ago
Radian measure = {tex}{\pi\over 180}\times degree\ measure{/tex}
So,
Degree measure = {tex}{18\over \pi}\times radian \ measure{/tex}
=> Degree measure = {tex}{180\over 22}\times 7\times 4{/tex}
= 229.09
Posted by Himanshu Goyal 8 years, 6 months ago
- 2 answers
Rashmi Bajpayee 8 years, 6 months ago
{tex}{\cos ^2}2{\rm{A}} + {\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) + {\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right) = {3 \over 2}{/tex}
We know that
{tex}{\cos ^2}{\rm{A}} = {{1 + \cos 2{\rm{A}}} \over 2}{/tex} ..............(i)
{tex}{\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) = {{1 + \cos \left( {{\rm{2A}} + {{240}^ \circ }} \right)} \over 2}{/tex} ..............(ii)
And {tex}{\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right) = {{1 + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}..............(iii)
Adding all these three equations,
{tex}{\cos ^2}2{\rm{A}} + {\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) + {\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right){/tex} = {tex}{3 \over 2} + {{1 + \cos 2{\rm{A}}} \over 2} + {{1 + \cos \left( {{\rm{2A + }}{{240}^ \circ }} \right)} \over 2} + {{1 + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}
= {tex}{{3 + 1 + \cos 2{\rm{A + }}1 + \cos \left( {{\rm{2A + }}{{240}^ \circ }} \right) + 1 + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}
= {tex}{{3 + 3 + \cos 2{\rm{A}} + \cos \left( {{\rm{2A + }}{{240}^ \circ }} \right) + \cos \left( {{\rm{2A}} - {{240}^ \circ }} \right)} \over 2}{/tex}
= {tex}{{3 + 3 + \cos 2{\rm{A}} + 2\cos 2{\rm{A}}.\cos {{240}^ \circ }} \over 2}{/tex}
= {tex}{{3 + 3 + \cos 2{\rm{A}} - \cos 2{\rm{A}}} \over 2}{/tex}
= {tex}{6 \over 2}{/tex}
{tex}\Rightarrow{/tex} {tex}{\cos ^2}2{\rm{A}} + {\cos ^2}2\left( {{\rm{A}} + {{120}^ \circ }} \right) + {\cos ^2}2\left( {{\rm{A}} - {{120}^ \circ }} \right) = {3 \over 2}{/tex}
Posted by Abhishek Kapoor 8 years, 6 months ago
- 1 answers
Rashmi Bajpayee 8 years, 6 months ago
Q.2 {tex}\sin 2\theta = {{2\tan \theta } \over {1 + {{\tan }^2}\theta }}{/tex}
Since {tex}\theta {/tex} is in third quadrant, therefore value of tangent is positive.
{tex}\Rightarrow{/tex} {tex}\sin 2\theta = {{2 \times {{24} \over 7}} \over {1 + {{\left( {{{24} \over 7}} \right)}^2}}}{/tex}
{tex}\Rightarrow{/tex} {tex}\sin 2\theta = {{{{48} \over 7}} \over {1 + {{576} \over {49}}}}{/tex}
{tex}\Rightarrow{/tex} {tex}\sin 2\theta = {{48} \over 7} \times {{49} \over {625}} = {{336} \over {625}}{/tex}
Posted by Abhishek Kapoor 8 years, 6 months ago
- 1 answers
Rashmi Bajpayee 8 years, 6 months ago
{tex}4{\cos ^2}\theta - 4\sin \theta = 1{/tex}
=> {tex}4\left( {1 - {{\sin }^2}\theta } \right) - 4\sin \theta = 1{/tex}
=> {tex}4 - 4{\sin ^2}\theta - 4\sin \theta = 1{/tex}
=> {tex} - 4{\sin ^2}\theta - 4\sin \theta + 4 - 1 = 0{/tex}
=> {tex}4{\sin ^2}\theta + 4\sin \theta - 3 = 0{/tex}
=> {tex}4{\sin ^2}\theta + 6\sin \theta - 2\sin \theta - 3 = 0{/tex}
=> {tex}2\sin \theta \left( {2\sin \theta + 3} \right) - 1\left( {2\sin \theta + 3} \right) = 0{/tex}
=> {tex}\left( {2\sin \theta + 3} \right)\left( {2\sin \theta - 1} \right) = 0{/tex}
=> {tex}2\sin \theta + 3 = 0{/tex} or {tex}2\sin \theta - 1 = 0{/tex}
=> {tex}\sin \theta = {{ - 3} \over 2}{/tex} or {tex}\sin \theta = {1 \over 2}{/tex}
But {tex}\theta {/tex} is positive, therefore, taking
{tex}\sin \theta = {1 \over 2}{/tex}
=> {tex}\sin \theta = \sin {30^ \circ }{/tex}
=> {tex}\theta = {30^ \circ }{/tex}
Posted by Anupam Bhatt 8 years, 6 months ago
- 1 answers
Rasmi Rv 8 years, 6 months ago
Let {tex}-3i= 0-3i=r\left( cos\theta +isin\theta \right) {/tex}
Comparing real and imaginary parts
{tex}rcos\theta =0.......................\left( i \right) \\ rsin\theta =-3....................\left( ii \right) \\ {/tex}
Squaring and adding equations (i) and (ii)
{tex}{ r }^{ 2 }{ cos }^{ 2 }\theta +{ { r }^{ 2 } }sin^{ 2 }\theta =9\\ \Rightarrow { r }^{ 2 }=9\quad \quad \quad \quad \quad \quad \quad \left( { \because cos }^{ 2 }\theta +sin^{ 2 }\theta =1 \right) {/tex}
{tex}\Rightarrow r=3{/tex}
Substituting {tex}r=3{/tex} in equations (i) and (ii), we get
{tex}cos\theta =0\quad and\quad sin\theta =-1\\ {/tex}
So {tex}\theta {/tex} lies in fourth quadrant
{tex}\therefore \quad \theta =\frac { -\Pi }{ 2 } {/tex} [ in the fourth quarant format of amplitude or principal argument is {tex}-\theta {/tex} (where {tex}\theta =\frac { \Pi }{ 2 } {/tex} ) ]
{tex}-3i=3\left( cos\left( \frac { -\Pi }{ 2 } \right) +isin\left( \frac { -\Pi }{ 2 } \right) \right) \\ \Rightarrow -3i=3\left( cos\left( \frac { \Pi }{ 2 } \right) -isin\left( \frac { \Pi }{ 2 } \right) \right) \quad \quad \left[ \because cos\left( -\theta \right) =cos\theta \quad ,sin\left( -\theta \right) =-sin\theta \right] {/tex}
Posted by Raj Yadav 8 years, 7 months ago
- 1 answers
Naveen Sharma 8 years, 7 months ago
Ans. {tex}f(x) = {1\over (x-4)(x-1)}{/tex}
We need to find where the expression is undefined. These values are not part of the domain.
For the above function, if it is defined then
{tex}(x-4)(x-1) \ne 0 {/tex}
=> {tex}x-4\ne 0 \space and\space x-1\ne 0 {/tex}
{tex}x\ne 4 \space and\space x\ne 1 {/tex}
So Domain of f(x) = R - {1,4}
Posted by Raj Yadav 8 years, 7 months ago
- 1 answers
Neeraj Sharma 8 years, 7 months ago
{tex}\left( {x - 4} \right)\left( {x - 1} \right) = {x^2} - 5x + 4{/tex} is a polynomial.
we know that Polynomial is defined for every real x.
hence Domain of {tex}\left( {x - 4} \right)\left( {x - 1} \right){/tex}=R
Posted by Bahirithi Karempudi 8 years, 7 months ago
- 0 answers
Posted by Anshika Solanki 8 years, 7 months ago
- 1 answers
Dharmendra Kumar 8 years, 5 months ago
1) B={2,3,5,7,11,...} since prime or positive factors of prime numbers are itself.
2)C={0,1} since C={x: x2=x where x belongs to R}
={x: x2-x=0 where x belongs to R}
={x: x(x-1)=0 where x belongs to R}
={x: x=0 and x-1=0 where x belongs to R}
={x: x=0 and x=1where x belongs to R}
={0,1}
Posted by Anshika Solanki 8 years, 8 months ago
- 1 answers
Neeraj Sharma 8 years, 7 months ago
Prime numbers have only two factors i.e. 1 and itself
{tex}B = \left\{ {1,x} \right\}{/tex}
As we know
{tex}\eqalign{ & {\left( 0 \right)^2} = 0 \cr & {\left( 1 \right)^2} = 1 \cr} {/tex}
{tex}C = \left\{ {0,1} \right\}{/tex}
Posted by Rupam Ghosh 8 years, 8 months ago
- 0 answers
Posted by Rishab Mittal 8 years, 8 months ago
- 1 answers
Posted by Koratamaddi Vamsi 8 years, 8 months ago
- 1 answers
Naveen Sharma 8 years, 8 months ago
Ans. Given: f(x + y) = f(x)*f (y) for all x, y {tex}\in {/tex} N ......(1)
{tex}\displaystyle\sum_{i=1}^{n} f(x) = 120 \space \space ............(2){/tex}
f(1) = 3
Taking x = y = 1 in (1), we obtain
f(1 + 1) = f (2) = f (1) f (1) = 3 × 3 = 9
Similarly, f(3) = f (1 + 2) = f (1) f (2) = 3 × 9 = 27
f(4) = f(1 + 3) = f (1) f (3) = 3 × 27 = 81
f(1), f (2), f (3), …, that is 3, 9, 27, …, forms a G.P.
First term is 3 and common ratio is also 3.
Also we know
{tex}=> S_n = {a(r^n -1)\over r - 1}{/tex}
{tex}=> S_n = {3(3^n -1)\over 3 - 1}{/tex} .................... (3)
From (2) and (3), We get
{tex}=> 120 = {3(3^n -1)\over 3 - 1}{/tex}
{tex}=> 120 = {3(3^n -1)\over 2}{/tex}
{tex}=> 80 = 3^n -1{/tex}
{tex}=> 81 = 3^n {/tex}
{tex}=> 3^4 = 3^n {/tex}
n = 4,
So Value of n = 4
Posted by Racheal Asamoah 8 years, 8 months ago
- 0 answers
Posted by Tanu Shree 8 years, 8 months ago
- 1 answers
Arun Soni 8 years, 5 months ago
Four cards can be selected from 52 cards in 52C4 ways.
Now, there are four suits, e.g. club, spade, heart and diamond each of 13 cards.
So total number of ways of getting all the four cards of the same suit:
⇒ 13C4+13C4+13C4+13C4=4×13C4
{tex}\therefore{/tex} the probability of getting 4 cards from the same suit={tex}\frac{{4{ \times ^{13}}{C_4}}}{{^{52}{C_4}}}{/tex}
= {tex}\frac{{198}}{{20825}}{/tex}
Posted by Sita Kadian 8 years, 9 months ago
- 1 answers
Naveen Sharma 8 years, 9 months ago
Ans.
Let {tex}\sqrt {-7-24i} = x+yi{/tex}
Squaring Both Sides,
=> -7-24i = x2 - y2 + 2xyi
on comparing, we get
=> x2 - y2 = -7 ……(1)
and 2xy = -24 ………(2)
We know
(x2+y2)2 = (x2-y2)2 + 4x2y2
=> (x2+y2)2 = 49 + 576
=> (x2+y2)2 = 625
=> x2+ y2 = 25 …………(3)
solving (2) and (3), We get
{tex}x = \pm 3 \space \space \space and \space y =\pm4{/tex}
from (2) as product of xy is -ve, so it means x and y are of opposite sign.
So, when x = 3, y = -4
when x = -3, y = 4
Therefore,
{tex}\sqrt {-7-24i} = \pm (3-4i){/tex}
Posted by Gurleen Kaur 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}{\left( {\sqrt {{x \over 3}} + {3 \over {2{x^2}}}} \right)^{10}}{/tex}
{tex}{T_{r + 1}}{ = ^{10}}{C_r}{\left( {\sqrt {{x \over 3}} } \right)^{10 - r}}{\left( {{3 \over {2{x^2}}}} \right)^r}{/tex}
{tex}{ = ^{10}}{C_r}{\left( x \right)^{5 - {r \over 2} - 2r}}{\left( 3 \right)^{ - 5 + {r \over 2} + r}}{\left( 2 \right)^{ - r}}{/tex}
{tex}{ = ^{10}}{C_r}{\left( x \right)^{{{10 - 5r} \over 2}}}{\left( 3 \right)^{{{3r - 10} \over 2}}}{\left( 2 \right)^{ - r}}{/tex}
{tex}for\,independent\,of\,x{/tex}
{tex}{\left( x \right)^{{{10 - 5r} \over 2}}} = {x^0}{/tex}
{tex}{{10 - 5r} \over 2} = 0{/tex}
{tex}10 - 5r = 0{/tex}
{tex}r = 2{/tex}
{tex}independent\,term\,{T_3}{ = ^{10}}{C_2}{\left( 3 \right)^{ - 2}}{\left( 2 \right)^{ - 2}}{/tex}
{tex} = {{10!} \over {2!8!}} \times {1 \over {36}}{/tex}
{tex} = {{10 \times 9} \over {2 \times 36}}{/tex}
{tex} = {5 \over 4}{/tex}
Posted by Renu Gupta 8 years, 9 months ago
- 0 answers
Posted by Prem Sharma 8 years, 9 months ago
- 1 answers
Neeraj Sharma 8 years, 9 months ago
{tex}let\,y = \sin 2x{/tex}
{tex}differentiating\,with\,respect\,to\,x{/tex}
{tex}{{dy} \over {dx}} = {d \over {dx}}\left( {\sin 2x} \right){/tex}
{tex} = \cos 2x{d \over {dx}}\left( {2x} \right){/tex}
{tex} = 2\cos 2x{/tex}

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Minakshi Kapoor 8 years, 5 months ago
Knowledge in statistics provides us with the necessary tools and conceptual foundations in quantitative reasoning to extract information intelligently from this sea of data.
0Thank You