No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 5 answers

Risky Girl Sonali Singh 7 years, 9 months ago

Hii

Ash Angel 7 years, 9 months ago

No I m ayres

Ayush Chaudhary 7 years, 9 months ago

Ayres u r alia

Ash Angel 7 years, 9 months ago

So we can talk

Aa Aa 7 years, 9 months ago

Ya
  • 7 answers

Sahnaaz Khan 7 years, 9 months ago

Hii zara

Sharmishta Sharma 7 years, 9 months ago

Hlo tanya

Sahnaaz Khan 7 years, 9 months ago

Hi guys

Miss Universe 7 years, 9 months ago

Hiii

Ash Angel 7 years, 9 months ago

Ya I m here

Sharmishta Sharma 7 years, 9 months ago

Hi

Complicated Life 7 years, 9 months ago

Hi☺
  • 3 answers

Mayank Bhunia 7 years, 9 months ago

Sorry it's 360-90-90-60

Cutiee Princess 7 years, 9 months ago

Here not possible

Mayank Bhunia 7 years, 9 months ago

The tangents are inclined at 60° . Then find the angle subtended at the centre of circle./_O = 360-90-90-30. And draw the tangents now
  • 3 answers

Mayank Sahu 7 years, 9 months ago

This is very tough question .... Prepare for exam even asked by chance..??

Puran Singh 7 years, 9 months ago

3

Shraddha Kapoor 7 years, 9 months ago

Teen
  • 5 answers

Mohit Chaudhary 7 years, 9 months ago

Guys i many problem in s.s.t plz someone hlp mee plz?

Sharmishta Sharma 7 years, 9 months ago

Meri SST rh gyi h

Complicated Life 7 years, 9 months ago

Almost ho gayi hai

Sharmishta Sharma 7 years, 9 months ago

Ok so yor all subjects are completed

Shatayu Ganvir 7 years, 9 months ago

All but almost sst
  • 1 answers

Sia ? 6 years, 5 months ago

Let us assume that <m:omath><m:r>√</m:r></m:omath>3 is rational.
That is, we can find integers a and b (<m:omath><m:r>≠0)</m:r></m:omath> such that a and b are co-prime

{tex}\style{font-family:Arial}{\begin{array}{l}\sqrt3=\frac ab\\b\sqrt3=a\\on\;squaring\;both\;sides\;we\;get\\3b^2=a^2\end{array}}{/tex}
Therefore, a2 is divisible by 3,
 it follows that a is also divisible by 3.
So, we can write a = 3c for some integer c.
Substituting for a, we get 3b2 = 9c2, that is, b​​​​​​2 = 3c2
This means that b2 is divisible by 3, and so b is also divisible by 3
 Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are co-prime.
This contradiction has arisen because of our incorrect assumption that <m:omath><m:r>√</m:r></m:omath>3 is rational.
So, we conclude that <m:omath><m:r>√</m:r></m:omath>3 is irrational.

  • 4 answers

Complicated Life 7 years, 9 months ago

Science best hai?PCB

Shraddha Kapoor 7 years, 9 months ago

What

Complicated Life 7 years, 9 months ago

Hn bolo

Sharad Gumber 7 years, 9 months ago

Plz tell wht should I take in 11
  • 1 answers

Shraddha Kapoor 7 years, 9 months ago

????
  • 1 answers

Sia ? 6 years, 5 months ago

In {tex}\triangle {/tex}ABC, BD {tex} \bot {/tex} AC
{tex}\therefore {/tex} In right {tex}\triangle {/tex} ADB, BD2 = AB2 - AD2 ...........(i)
In right {tex}\triangle {/tex} BDC, CD2=BC2-BD2 .............(ii)

Subtracting (ii) from (i) we get
BD2 - CD2 = AB2 - AD2 - BC2 + BD2
= AC2 - AD2 - BC2 + BD2
= (AD + CD)2 - AD2 - BC2 + BD2 [AB = AC, Given]
=(CD2 + BD2) - BC2 + 2AD.CD [AC = AD + CD]
= BC2 - BC2 + AD.CD  [CD2+BD2 = BC2]
=2AD.CD Proved

  • 1 answers

Sia ? 6 years, 5 months ago

Since both the spheres are made of same metal, their weights are directly proportional to their volumes, or the ratio of their volumes is equal to the ratio of their weights.
Radius of first small sphere, r1 = 3 cm.
Let the radius of second small sphere be r2 cm.
{tex}\therefore \quad \frac { \text { volume of first small sphere } } { \text { volume of second small sphere } } = \frac { 1 } { 7 }{/tex}
{tex}\Rightarrow \frac { \frac { 4 } { 3 } \pi r _ { 1 } ^ { 3 } } { \frac { 4 } { 3 } \pi r _ { 2 } ^ { 3 } } = \frac { 1 } { 7 } \Rightarrow \frac { 3 ^ { 3 } } { r _ { 2 } ^ { 3 } } = \frac { 1 } { 7 } \Rightarrow r _ { 2 } ^ { 3 } = 27 \times 7 = 189.{/tex}
Sum of volumes of two small spheres
{tex}= \frac { 4 } { 3 } \pi \left( r _ { 1 } ^ { 3 } + r _ { 2 } ^ { 3 } \right) = \left[ \frac { 4 } { 3 } \pi \left( 3 ^ { 3 } + 189 \right) \right] \mathrm { cm } ^ { 3 }{/tex}
{tex}= \left( \frac { 4 } { 3 } \pi \times 216 \right) \mathrm { cm } ^ { 3 }{/tex}
Let the radius of the new sphere be R.
Volume of new sphere = sum of volumes of two small spheres
{tex}\Rightarrow \frac { 4 } { 3 } \pi R ^ { 3 } = \frac { 4 } { 3 } \pi \times 216 \Rightarrow R ^ { 3 } = 216{/tex}
{tex}\Rightarrow R = \sqrt [ 3 ] { 216 } = 6 \mathrm { cm }{/tex} {tex}\Rightarrow{/tex} diameter = 2R = 12cm.

  • 1 answers

Sia ? 6 years, 5 months ago

Let the number of students be x and the number of rows be y.
Number of students in each row = {tex}x\over y{/tex}
According to the question, when one student is extra in each row, there are 2 rows less i.e., when each row has {tex}\left( \frac { x } { y } + 1 \right){/tex} students, the number of rows is {tex}(y - 2).{/tex}
{tex}\therefore{/tex} Total number of students = No. of rows {tex}\times{/tex}No. of students in each row
{tex}\Rightarrow x = \left( \frac { x } { y } + 1 \right) ( y - 2 ){/tex}
{tex}\Rightarrow x = x - \frac { 2 x } { y } + y - 2 {/tex}
{tex}\Rightarrow - \frac { 2 x } { y } + y - 2 = 0{/tex}....(i)
According to the question, If one student is less in each row, then there are 3 rows more i.e., when each row has {tex}\left( \frac { x } { y } - 1 \right){/tex}students, the number of rows is {tex} (y + 3).{/tex}
{tex}\therefore{/tex}  Total number of students = No. of rows {tex}\times{/tex}No. of students in each row
{tex}\Rightarrow x = \left( \frac { x } { y } - 1 \right) ( y + 3 )\\ \Rightarrow x = x + \frac { 3 x } { y } - y - 3 {/tex}
{tex}\Rightarrow \frac { 3 x } { y } - y - 3 = 0{/tex}....(ii)
Putting {tex}\frac { x } { y } = u{/tex} in equation (i) and equation (ii), we get
{tex}\Rightarrow{/tex} -2{tex}u{/tex}{tex}y{/tex} {tex}-2=0 {/tex} ...(iii)
{tex}\Rightarrow{/tex} 3{tex}u{/tex} - {tex}y{/tex}{tex}- 3=0{/tex} .....(iv)
Adding (iii) and (iv), we get
{tex}\Rightarrow u - 5 = 0\\ \Rightarrow u = 5{/tex}
Putting u in eq.(iii), we get
{tex}\Rightarrow -10 + y -2 = 0 {/tex}
{tex}\Rightarrow y =12{/tex}
Now, Substituting u value, we get
{tex}\Rightarrow \frac { x } { y } = 5\\ \Rightarrow \frac { x } { 12 } = 5\\ \Rightarrow x = 60{/tex}
Therefore, the number of students in the class is 60.

  • 1 answers

Yuvraj Singh 7 years, 9 months ago

Kruger
  • 1 answers

Sia ? 6 years, 5 months ago

Since tangent at a point to a circle is perpendicular to the radius through the point of contact. Therefore, {tex}\angle A C B{/tex} = 90°
In {tex}\Delta A C B{/tex}, we have
  AB2 = AC2 + BC[By Pythagoras Theorem]
{tex}\Rightarrow{/tex} AB2 = 32 + 42 = 9 + 16 = 25
AB = 5 cm
Since the line joining the centres of two intersecting circles is perpendicular bisector of their common chord.
{tex}\therefore \quad A P \perp C D{/tex}
and {tex}C P = P D{/tex}
Let AP = x. Then, BP = AB - AP = 5 - x cm (AB = 5cm)
Further, let CP = DP = y cm. 
In ∆ APC and ∆ BPC applying Pythagoras theorem, we have


    AC2 = A P2 + PC2, BC2 = PB2 + PC2
{tex}\Rightarrow \quad{/tex} 32 = x2 + y2 ......(1)

and, 42 = (5 - x)2 + y2......(2)

Subtracting equation (1) from equation (2) , we get :-
{tex}\Rightarrow{/tex} 42 - 32 = {(5 - x)2 + y2} - {x2 + y2
{tex}\Rightarrow{/tex} 7 = 25 - 10x
{tex}\Rightarrow{/tex} 10x = 18 {tex}\Rightarrow{/tex} x = 1.8 cm


Now, substituting x = 1.8 in equation (1) , we get :-

       32 = (1.8)2 + y2

 {tex}\Rightarrow{/tex} y = {tex}\sqrt { 9 - ( 1.8 ) ^ { 2 } } = \sqrt { 5.76 } = 2.4 \mathrm { cm }{/tex}

Hence, common chord  CD = 2CP = 2y = 4.8 cm.   Ans.

  • 5 answers

Deepanshi Lovely 7 years, 9 months ago

Deepanshi and g is secret

Love Punjabi 7 years, 9 months ago

Form"

Love Punjabi 7 years, 9 months ago

D G full forn

Love Punjabi 7 years, 9 months ago

Ok

Deepanshi Lovely 7 years, 9 months ago

Not bro sis bolo
  • 1 answers

A A 7 years, 9 months ago

Hello my name copier
  • 1 answers

Sia ? 6 years, 5 months ago

Given, 
tan A = n tan B

{tex} \Rightarrow{/tex} tanB = {tex}\frac{1}{n}{/tex}tan A

{tex}\Rightarrow{/tex} cotB = {tex}\frac { n } { \tan A }{/tex}..........(1)

Also given, 

sin A = m sin B

{tex}\Rightarrow{/tex} sin B = {tex}\frac{1}{m}{/tex}sin A

{tex}\Rightarrow{/tex} cosec B = {tex}\frac { m } { \sin A }{/tex}.....(2)

We know that, cosec2B - cot2B = 1, hence from (1) & (2) :-


{tex} \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } } { \tan ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } - n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow{/tex} m2 - n2cos2A = sin2A
{tex}\Rightarrow{/tex} m2 - n2cos2A = 1 - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = n2cos2A - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = (n2 - 1) cos2A
{tex}\Rightarrow \quad \frac { m ^ { 2 } - 1 } { n ^ { 2 } - 1 } ={/tex} cos2A

  • 3 answers

Love Punjabi 7 years, 9 months ago

Dollar?

Deepanshi Lovely 7 years, 9 months ago

Not in rupee bro

Vikram Viku 7 years, 9 months ago

Cost 0 no pain no gain ?????
  • 8 answers

Littleshine Aaaru?? 7 years, 9 months ago

Koi hae mujse baat kar sakta hoon

Riya Kant 7 years, 9 months ago

Guys don't fight ?it's only a joke

Deepanshi Lovely 7 years, 9 months ago

Ya bcoz u don't afford mr

Love Punjabi 7 years, 9 months ago

I m not trying to buy u ?✌

Deepanshi Lovely 7 years, 9 months ago

No I am costly

Vikram Viku 7 years, 9 months ago

Yes

Riya Kant 7 years, 9 months ago

Yep

Littleshine Aaaru?? 7 years, 9 months ago

Hiiii...
  • 3 answers

Complicated Life 7 years, 9 months ago

Punjabi hu but abhi delhi me raheti hu

Littleshine Aaaru?? 7 years, 9 months ago

Nooo

Vikram Viku 7 years, 9 months ago

No
  • 1 answers

Amarkanta Meitei 7 years, 9 months ago

Let us assume that √7 be rational Then it must in the form of p/q (q#0) { p and q are co-prime } √7=p/q => √7 × q=p Quiring on both sides => 7q2 = p2 ------->(1) p2 is divisible by 7 p is divisible by 7 p=7c (c is a positive integer) (squaring on both side) p2=49c2--------> (2) substitute p2 in equipment (1) we get 7q2=49c2 =>q is divisible by 7 Thus q and p have a common factor 7 there is a contradiction as our assumption p&q are co-prime but it has a common factor So that √7 is an irrational.
  • 1 answers

Sia ? 6 years, 5 months ago

Let the denominator be y, then numerators = y - 3

So the fraction be  {tex}\frac { y - 3 } { y }{/tex} 

By the given condition, new fraction = {tex}\frac { y - 3 + 2 } { y + 2 }{/tex}

{tex}= \frac { y- 1 } { y+ 2 }{/tex}

{tex}\frac { y - 3 } { y } + \frac { y - 1 } { y + 2 } = \frac { 29 } { 20 }{/tex}

{tex}\frac {( y - 3 ) ( y + 2 ) + y ( y - 1 ) }{y(y+2)}= \frac{29}{20}{/tex}

{tex}\ 20 [ ( y - 3 ) ( y + 2 ) + y ( y - 1 ) ] = 29 \left( y ^ { 2 } + 2 y \right){/tex}

{tex}\ 20 [ ( y^2-3y+2y-6)+(y^2-y)] = 29 \left( y ^ { 2 } + 2 y \right){/tex}

 {tex}20 \left( y ^ { 2 } - y - 6 + y ^ { 2 } - y \right) = 29 y ^ { 2 } + 58 y{/tex}

{tex}20 \left( 2y^2-2y-6 \right) = 29 y ^ { 2 } + 58 y{/tex}

 {tex}11 y ^ { 2 } - 98 y - 120 = 0{/tex}

 {tex}11 y ^ { 2 } - 110 y + 12 y - 120 = 0{/tex}

{tex}( 11 y + 12 ) ( y - 10 ) = 0 {/tex}

{tex} \therefore y = 10{/tex}

{tex}\therefore {/tex} The fraction is {tex}\frac { 7 } { 10 }{/tex}

  • 5 answers

Tanisha Dey 7 years, 9 months ago

90%

Littleshine Aaaru?? 7 years, 9 months ago

97 percent

Xys Offugdfu 7 years, 9 months ago

000000

Love Punjabi 7 years, 9 months ago

99.9

Vikram Viku 7 years, 9 months ago

Mera too 95 or96/ percent

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App