Two spheres of same metal weight …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 4 months, 2 weeks ago
- 2 answers
Posted by Kanika . 2 months, 3 weeks ago
- 1 answers
Posted by Lakshay Kumar 3 weeks, 5 days ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 5 months ago
Since both the spheres are made of same metal, their weights are directly proportional to their volumes, or the ratio of their volumes is equal to the ratio of their weights.
Radius of first small sphere, r1 = 3 cm.
Let the radius of second small sphere be r2 cm.
{tex}\therefore \quad \frac { \text { volume of first small sphere } } { \text { volume of second small sphere } } = \frac { 1 } { 7 }{/tex}
{tex}\Rightarrow \frac { \frac { 4 } { 3 } \pi r _ { 1 } ^ { 3 } } { \frac { 4 } { 3 } \pi r _ { 2 } ^ { 3 } } = \frac { 1 } { 7 } \Rightarrow \frac { 3 ^ { 3 } } { r _ { 2 } ^ { 3 } } = \frac { 1 } { 7 } \Rightarrow r _ { 2 } ^ { 3 } = 27 \times 7 = 189.{/tex}
Sum of volumes of two small spheres
{tex}= \frac { 4 } { 3 } \pi \left( r _ { 1 } ^ { 3 } + r _ { 2 } ^ { 3 } \right) = \left[ \frac { 4 } { 3 } \pi \left( 3 ^ { 3 } + 189 \right) \right] \mathrm { cm } ^ { 3 }{/tex}
{tex}= \left( \frac { 4 } { 3 } \pi \times 216 \right) \mathrm { cm } ^ { 3 }{/tex}
Let the radius of the new sphere be R.
Volume of new sphere = sum of volumes of two small spheres
{tex}\Rightarrow \frac { 4 } { 3 } \pi R ^ { 3 } = \frac { 4 } { 3 } \pi \times 216 \Rightarrow R ^ { 3 } = 216{/tex}
{tex}\Rightarrow R = \sqrt [ 3 ] { 216 } = 6 \mathrm { cm }{/tex} {tex}\Rightarrow{/tex} diameter = 2R = 12cm.
0Thank You