No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Mansi - 7 years, 7 months ago

Please give me full answer

Prince Godawat 7 years, 7 months ago

The value of y=19
  • 1 answers

Sia ? 6 years, 4 months ago

5x2 - 6x - 2 = 0

Multiplying the above equation by 1/5
{tex} \Rightarrow {x^2} - \frac{6}{5}x - \frac{2}{5} = 0{/tex}
{tex}\Rightarrow x ^ { 2 } - \frac { 6 } { 5 } x + \left( \frac { 3 } { 5 } \right) ^ { 2 } - \left( \frac { 3 } { 5 } \right) ^ { 2 } - \frac { 2 } { 5 } = 0{/tex}
{tex}\Rightarrow \left( x - \frac { 3 } { 5 } \right) ^ { 2 } = \frac { 9 } { 25 } + \frac { 2 } { 5 }{/tex}
{tex}\Rightarrow \left( x - \frac { 3 } { 5 } \right) ^ { 2 } = \frac { 9 + 10 } { 25 }{/tex}
{tex}\Rightarrow \left( x - \frac { 3 } { 5 } \right) ^ { 2 } = \frac { 19 } { 25 }{/tex}
{tex}\Rightarrow x - \frac { 3 } { 5 } = \pm \frac { \sqrt { 19 } } { 5 }{/tex}
{tex}\Rightarrow x = \frac { 3 } { 5 } \pm \frac { \sqrt { 19 } } { 5 }{/tex}
{tex}\Rightarrow x = \frac { 3 + \sqrt { 19 } } { 5 } \text { or } x = \frac { 3 - \sqrt { 19 } } { 5 }{/tex}

  • 1 answers

Mansi - 7 years, 7 months ago

Means
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Zero of a polynomial is a solution to the polynomial equation, P(x) = 0 but Root of a polynomial is that value of x that makes the polynomial equal to 0.

  • 1 answers

Sia ? 6 years, 4 months ago

{tex}x - y - 5 = 0{/tex}
{tex}\Rightarrow y = x - 5{/tex}

x 2 5
y -3 0

{tex}3x + 5y - 15 = 0{/tex}
{tex}\Rightarrow y = \frac { 15 - 3 x } { 5 }{/tex}

x 0 5
y 3 0


Thus, the two graph lines intersect at {tex}(5, 0){/tex}
{tex}\therefore{/tex}  {tex}x = 5\ and\ y = 0{/tex} is the solution of given system of equations

The vertices of the triangle formed by these lines and y - axis are {tex}(5, 0), (0, 3)\ and\ (0, -5){/tex}
So, height of the triangle
= distance from (5, 0) to x-axis
= {tex}5\ units{/tex}
Base = {tex}8\ units{/tex}
Area of the triangle = {tex}\frac { 1 } { 2 } \times \text { base } \times \text{height}{/tex}
{tex}= \frac { 1 } { 2 } \times 8 \times 5{/tex}
= {tex}20\ sq. units{/tex}

  • 0 answers
  • 1 answers

Subhra Banerjee 6 years, 10 months ago

Dont know
  • 2 answers

Kanak Patidar 7 years, 7 months ago

During practise mark the questions which seems important to u to revise during exams?

Gayatri Jagtap 7 years, 7 months ago

To solve the examples repeated by understanding them .
  • 1 answers

Subhra Banerjee 7 years, 7 months ago

Lcm of 2,4,6,8,10,12=120 After 2 hours they toll together Reqd. No. Of times = (30/2+1)=16
  • 2 answers

Umang Gupta 7 years, 7 months ago

Ok ... How ans. is coming

Aastha Virmani 7 years, 7 months ago

I can help you
  • 1 answers

Rachit Dwivedi 7 years, 7 months ago

P^2+B^2=H^2. Dividing by H^2 on both sides. P^2/H^2+B^2/H^2=H^2/H^2. P^2/H^2=sin^2●. B^2/H^2=cos^2●. Sin^2●+cos^2●=1
  • 6 answers

Aastha Virmani 7 years, 7 months ago

Rs agarwal is same like rd sharma but you should start with rd sharma

Yukti Saini 7 years, 7 months ago

Rd sharma is best as it contains ques of all the books including ncert and examplar

Yash Pratap Singh 7 years, 7 months ago

Rs agarwal gives you the selected and best questions

Anmol Gupta 7 years, 7 months ago

Agar rs agarwal pura lga lo ache marks aaenge

@Jay Bunkar 7 years, 7 months ago

R d sharma

Charu Sharma 7 years, 7 months ago

Rd sharma is the best .....not sure .. ...but it is good
  • 1 answers

Aastha Virmani 7 years, 7 months ago

Solve it by elimination method
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Suppose, the digit at units and tens place of the given number be x and y respectively.
{tex}\therefore{/tex} the number is {tex}10y + x{/tex}
After interchanging the digits, the number becomes {tex}10x + y{/tex}
Given: The sum of the numbers obtained by interchanging the digits and the original number is 66.
Thus, {tex}(10x + y) + (10y + x) =66{/tex}
{tex}\Rightarrow{/tex} {tex}10x + y + 10y + x = 66{/tex}
{tex}\Rightarrow{/tex} {tex}11x +11y =66{/tex}
{tex}\Rightarrow{/tex} {tex}11(x + y) = 66{/tex}
{tex}\Rightarrow x + y = \frac{{66}}{{11}}{/tex}
{tex}\Rightarrow{/tex} {tex}x + y = 6{/tex} .....(i)
Also given, the two digits of the number are differing by 2.
{tex}\therefore{/tex} we have {tex}x - y = ±2{/tex}....(ii)
So, we have two systems of simultaneous equations,
{tex}x - y = 2, \;x + y = 6{/tex}
{tex}x - y = -2, \;x + y = 6{/tex}
Here x and y are unknowns. We have to solve the above systems of equations for x and y.

  1. First, we solve the system
    {tex}x - y = 2{/tex}
    x + y = 6
    Adding the two equations,
    {tex}\Rightarrow(x - y) + (x + y) = 2 + 6{/tex}
    {tex}\Rightarrow{/tex} {tex}x - y + x + y = 8{/tex}
    {tex}\Rightarrow{/tex} {tex}2x = 8{/tex}
    {tex}\Rightarrow x = \frac{8}{2} {/tex}
    {tex}\Rightarrow{/tex}  {tex}x = 4{/tex}
    Substituting the value of x in the first equation, we have
    {tex}4 - y = 2{/tex}
    {tex}\Rightarrow{/tex} {tex}y = 4 - 2{/tex}
    {tex}\Rightarrow{/tex} {tex}y = 2{/tex}
    Hence, the number is 10 {tex}\times{/tex} 2 + 4 = 24
  2. Now, we solve the system
    {tex}x - y= -2{/tex}
    {tex}x + y = 6{/tex}
    Adding the two equations, we have
    {tex}(x - y) + (x + y) = -2 + 6{/tex}
    {tex}\Rightarrow{/tex} {tex}x - y + x + y = 4{/tex}
    {tex}\Rightarrow{/tex} {tex}2x = 4{/tex}
    {tex}\Rightarrow x = \frac{4}{2} {/tex}
    {tex}\Rightarrow{/tex} x = 2
    Substituting the value of x in the first equation, 
    {tex}\Rightarrow2 - y = -2{/tex}
    {tex}\Rightarrow{/tex} {tex}y = 2 + 2{/tex}
    {tex}\Rightarrow{/tex} y = 4
    Hence, the number is 10 {tex}\times{/tex} 4 + 2 = 42

    Thus, the two numbers are 24 and 42.
  • 1 answers

Sabir Ali 7 years, 7 months ago

See ncert solution
  • 6 answers

Aditi Sengar 7 years, 7 months ago

2

Shriya ?? 7 years, 7 months ago

2

Noni Khera 7 years, 7 months ago

Too much easy,ans is 2

Anu Kalyan 7 years, 7 months ago

2

Rahul Sharma 7 years, 7 months ago

2

Sushant Sharma 7 years, 7 months ago

2
  • 3 answers

Shriya ?? 7 years, 7 months ago

ncert only

Aisha Jain 7 years, 7 months ago

Exam idea is also good

Ana Akhlak 7 years, 7 months ago

I think together with and Ulike
  • 1 answers

Himamshu Kumar 7 years, 7 months ago

75.3 259583
  • 1 answers

Sia ? 6 years, 4 months ago

We have, abx2 + (b2 -ac) x-bc = 0

{tex}\implies{/tex}abx2 + b2 x - acx - bc = 0

{tex}\implies{/tex}bx ( ax+b) - c (ax + b) = 0

{tex}\implies{/tex}(ax + b) (bx - c) = 0

Either ax+b = 0 or bx - c = 0

{tex}\implies x = -{b \over a},\, {c \over b}{/tex}

Hence, {tex}x = -{b \over a},\, {c \over b}{/tex} are the required solutions.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App