No products in the cart.

A set contain 4 natural no. …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

A set contain 4 natural no. And set b contain 3 alphabet find no. Of all possible onto
  • 1 answers

Manav Sharma 8 months, 1 week ago

To find the number of onto (surjective) functions from set \( A \) to set \( B \), where \( |A| = 4 \) and \( |B| = 3 \), we can use the formula: \[ \text{Number of onto functions} = |B|^{|A|} - \binom{|B|}{1} \times (|B| - 1)^{|A|} + \binom{|B|}{2} \times (|B| - 2)^{|A|} - \binom{|B|}{3} \times (|B| - 3)^{|A|} \] In this case, \( |A| = 4 \) and \( |B| = 3 \), so we have: \[ \text{Number of onto functions} = 3^4 - \binom{3}{1} \times 2^4 + \binom{3}{2} \times 1^4 - \binom{3}{3} \times 0^4 \] \[ = 81 - 3 \times 16 + 3 \times 1 - 1 \times 0 \] \[ = 81 - 48 + 3 - 0 \] \[ = 36 \] So, there are \( 36 \) possible onto functions from set \( A \) to set \( B \).
http://mycbseguide.com/examin8/

Related Questions

Three friends Ravi Raju
  • 0 answers
Y=sin√ax^2+√bx+√c
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App