No products in the cart.

Integration of Underoot tanx

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Integration of Underoot tanx
  • 1 answers

Nikhil Verma 8 years, 1 month ago

∫√(tan x) dx Let tan x = t2 ⇒ sec2 x dx = 2t dt ⇒ dx = [2t / (1 + t4)]dt ⇒ Integral ∫ 2t2 / (1 + t4) dt ⇒ ∫[(t2 + 1) + (t2 - 1)] / (1 + t4) dt ⇒ ∫(t2 + 1) / (1 + t4) dt + ∫(t2 - 1) / (1 + t4) dt ⇒ ∫(1 + 1/t2 ) / (t2 + 1/t2 ) dt + ∫(1 - 1/t2 ) / (t2 + 1/t2 ) dt ⇒ ∫(1 + 1/t2 )dt / [(t - 1/t)2 + 2] + ∫(1 - 1/t2)dt / [(t + 1/t)2 -2] Let t - 1/t = u for the first integral ⇒ (1 + 1/t2 )dt = du and t + 1/t = v for the 2nd integral ⇒ (1 - 1/t2 )dt = dv Integral = ∫du/(u2 + 2) + ∫dv/(v2 - 2) = (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c = (1/√2) tan-1 [(t2 - 1)/t√2] + (1/2√2) log (t2 + 1 - t√2) / t2 + 1 + t√2) + c = (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c
https://examin8.com Test

Related Questions

Y=sin√ax^2+√bx+√c
  • 0 answers
Three friends Ravi Raju
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App