integrate (sin inverse x)whole square

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Monish Khan 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Charu Baid 1 year, 4 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 4 months ago
- 0 answers
Posted by Ananya Singh 1 year, 6 months ago
- 0 answers
Posted by Sanjay Kumar 1 year, 5 months ago
- 0 answers
Posted by Karan Kumar Mohanta 1 year, 5 months ago
- 0 answers
Posted by Sanjna Gupta 1 year, 4 months ago
- 4 answers
Posted by Sneha Pandey 1 year, 5 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 4 months ago
- 3 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Putting {tex}x = \sin \theta \Rightarrow dx = \cos \theta d\theta {/tex}
{tex}\therefore \int {{{\left( {{{\sin }^{ - 1}}x} \right)}^2}} dx{/tex}
{tex}= \int {{\theta ^2}\cos \theta } d\theta {/tex}
[Applying product rule]
{tex} = {\theta ^2}\sin \theta - \int {2\theta \sin \theta d\theta } {/tex}
{tex}= {\theta ^2}\sin \theta - 2\int {\theta \sin \theta d\theta }{/tex}
[Again applying product rule]
{tex}= {\theta ^2}\sin \theta - 2\left[ {\theta \left( { - \cos \theta } \right) - \int {1.\left( { - \cos \theta } \right)d\theta } } \right]{/tex}
{tex}= {\theta ^2}\sin \theta + 2\theta \cos \theta - 2\int {\cos \theta d\theta } {/tex}
{tex}= {\theta ^2}\sin \theta + 2\theta \cos \theta - 2\sin \theta + c{/tex}
{tex}= x{\left( {{{\sin }^{ - 1}}x} \right)^2} + 2\sqrt {1 - {x^2}} {\sin ^{ - 1}}x - 2x + c{/tex}
0Thank You