Integration of underroot 1-sin x into …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Kanha Ji 5 years, 11 months ago
- 1 answers
Related Questions
Posted by Xxxxxx Xx 1 year, 2 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 3 answers
Posted by Karan Kumar Mohanta 1 year, 2 months ago
- 0 answers
Posted by Charu Baid 1 year, 2 months ago
- 0 answers
Posted by Sanjna Gupta 1 year, 2 months ago
- 4 answers
Posted by Ananya Singh 1 year, 3 months ago
- 0 answers
Posted by Sanjay Kumar 1 year, 3 months ago
- 0 answers
Posted by Sneha Pandey 1 year, 3 months ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 11 months ago
{tex}\int \frac{\sqrt{1-\sin x} e^{-\pi / 2}}{1+\cos x} d x{/tex}
{tex}=\int \frac{\sqrt{\sin ^{2}\left(\frac{x}{2}\right)+\cos ^{2}\left(\frac{1}{2}\right)-2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)} e^{-x / 2}}{1+2 \cos ^{2}\left(\frac{x}{2}\right)-1} d x{/tex}
{tex}=\int \frac{\sqrt{\left(\sin \left(\frac{x}{2}\right)-\cos \left(\frac{x}{2}\right)\right)^{2}} e^{-x / 2}}{2 \cos ^{2}\left(\frac{x}{2}\right)} d x{/tex}
{tex}\int \frac{\sqrt{1-\sin x} e^{-x / 2}}{1+\cos x} d x{/tex}
{tex}=\int\left(\frac{\sin \left(\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{2}\right)}-\frac{\cos \left(\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{2}\right)}\right) e^{-x / 2} d x{/tex}
{tex}=\int\left[\frac{1}{2} \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2}-\frac{1}{2} \sec \left(\frac{x}{2}\right) e^{-x / 2}\right] d x{/tex}
{tex}=\frac{1}{2} \int \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2} d x-\frac{1}{2} \int \sec \left(\frac{x}{2}\right) e^{-x / 2} d x{/tex}
{tex}\left.=\frac{1}{2} \int \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2} d x-\frac{1}{2}\left[\sec \left(\frac{x}{2}\right)\right] e^{-x / 2} d x-\int \frac{d}{d x}\left(\sec \left(\frac{x}{2}\right)\right)\left(\int e^{-x / 2} d x\right) d x\right] \quad(U\text { sing integration by parts) }{/tex}
{tex}=\frac{1}{2} \int \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2} d x-\frac{1}{2}\left[\sec \left(\frac{x}{2}\right)\left(\frac{e^{-x / 2}}{-1 / 2}\right)-\int \frac{1}{2} \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right)\left(\frac{e^{-x / 2}}{-1 / 2}\right) d x\right]{/tex}
<div class="exp_content maxHeight75px">{tex}=\frac{1}{2} \int \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2} d x-\frac{1}{2} \sec \left(\frac{x}{2}\right)\left(\frac{e^{-x / 2}}{-1 / 2}\right)+\frac{1}{2} \int \frac{1}{2} \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right)\left(\frac{e^{-x / 2}}{-1 / 2}\right) d x{/tex}
{tex}=\frac{1}{2} \int \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2} d x+\sec \left(\frac{x}{2}\right) e^{-x / 2}-\frac{1}{2} \int \tan \left(\frac{x}{2}\right) \sec \left(\frac{x}{2}\right) e^{-x / 2} d x{/tex}
{tex}=\sec \left(\frac{x}{2}\right) e^{-x / 2}+C{/tex}
{tex}\Rightarrow \int \frac{\sqrt{1+\sin x}}{\cos x} e^{-x / 2} d x=\sec \left(\frac{x}{2}\right) e^{-x / 2}+C{/tex}
<script>document.write('This conversation is already closed by Expert');</script>
</div> </div>1Thank You