No products in the cart.

9π/8-9/4sin^1/3=9/4sin^2√2/3

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

9π/8-9/4sin^1/3=9/4sin^2√2/3
  • 2 answers

Sia ? 6 years, 2 months ago

L.H.S.= {tex}\frac{{9\pi }}{8} - \frac{9}{4}{\sin ^{ - 1}}\frac{1}{3} {/tex} {tex} = \frac{9}{4}\left[ {\frac{\pi }{2} - {{\sin }^{ - 1}}\frac{1}{3}} \right]{/tex}

{tex} = \frac{9}{4}{\cos ^{ - 1}}\frac{1}{3}\left[ {\because {{\sin }^{ - 1}}\frac{1}{3} + {{\cos }^{ - 1}}\frac{1}{3} = \frac{\pi }{2}} \right]{/tex}
Let
{tex}{\cos ^{ - 1}}\frac{1}{3} = \theta{/tex}
{tex}\implies\cos \theta = \frac{1}{3}{/tex} 
{tex}\implies\sin \theta = \frac{{2\sqrt 2 }}{3}{/tex}
{tex}\implies\theta = {\sin ^{ - 1}}\frac{{2\sqrt 2 }}{3}{/tex}
{tex} \Rightarrow {\cos ^{ - 1}}\frac{1}{3} = {\sin ^{ - 1}}\frac{{2\sqrt 2 }}{3}{/tex} 
{tex}\therefore L. H.S= \frac{{9\pi }}{8} - \frac{9}{4}{\sin ^{ - 1}}\frac{1}{3} = \frac{9}{4}{\sin ^{ - 1}}\frac{{2\sqrt 2 }}{3} = R.H.S{/tex}
{tex}{/tex}

Dolly ?️ 6 years, 2 months ago

9/4[pi/2-sin^-1(1/3)] 9/4[cos^-1(1/3)] 9/4[sin^-1(2root2/3)]
http://mycbseguide.com/examin8/

Related Questions

Three friends Ravi Raju
  • 0 answers
Y=sin√ax^2+√bx+√c
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App