If cos^-1(x/a)+cos^-1(y/b)=@ Then prove that x^2/a^2 …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Dolly ?️ 6 years, 2 months ago
- 3 answers
Miss Mor 6 years, 2 months ago
Related Questions
Posted by Xxxxxx Xx 1 year, 2 months ago
- 0 answers
Posted by Karan Kumar Mohanta 1 year, 2 months ago
- 0 answers
Posted by Sanjay Kumar 1 year, 3 months ago
- 0 answers
Posted by Charu Baid 1 year, 2 months ago
- 0 answers
Posted by Sneha Pandey 1 year, 3 months ago
- 0 answers
Posted by Ananya Singh 1 year, 3 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 3 answers
Posted by Sanjna Gupta 1 year, 2 months ago
- 4 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years, 2 months ago
Given, {tex}{\cos ^{ - 1}}\frac{x}{a} + {\cos ^{ - 1}}\frac{y}{b} = a{/tex}
{tex}\left[ {\because {{\cos }^{ - 1}}x + {{\cos }^{ - 1}}y} \right. \left. { = {{\cos }^{ - 1}}\left( {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right)} \right]{/tex}
{tex}\Rightarrow {\cos ^{ - 1}}\left[ {\frac{x}{a}.\frac{y}{b} - \sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} .\sqrt {1 - \frac{{{y^2}}}{{{b^2}}}} } \right] = a{/tex}
{tex}\Rightarrow\frac{{xy}}{{ab}} - \sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} \cdot \sqrt {1 - \frac{{{y^2}}}{{{b^2}}}} = \cos a{/tex}
{tex}\Rightarrow \frac{{xy}}{{ab}} - \cos a = \sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} \sqrt {1 - \frac{{{y^2}}}{{{b^2}}}}{/tex}
On squaring both side, we get
{tex}\Rightarrow{\left( {\frac{{xy}}{{ab}} - \cos a } \right)^2} = {\left( {\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} \sqrt {1 - \frac{{{y^2}}}{{{b^2}}}} } \right)^2}{/tex}
{tex}\Rightarrow \frac{{{x^2}{y^2}}}{{{a^2}{b^2}}} + {\cos ^2}a - 2.\frac{{xy}}{{ab}}.\cos a = \left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right)\left( {1 - \frac{{{y^2}}}{{{b^2}}}} \right){/tex}
{tex}\Rightarrow\frac{{{x^2}{y^2}}}{{{a^2}{b^2}}} + {\cos ^2}a - 2\frac{{xy}}{{ab}}\cos a = 1 - \frac{{{y^2}}}{{{b^2}}} - \frac{{{x^2}}}{{{a^2}}} + \frac{{{x^2}{y^2}}}{{{a^2}{b^2}}}{/tex}
{tex}\Rightarrow\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - 2\frac{{xy}}{{ab}}\cos a = 1 - {\cos ^2}a{/tex}
{tex}\Rightarrow\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - 2\frac{{xy}}{{ab}}\cos a = {\sin ^2}a{/tex}
0Thank You