4x-3y=3 3x-5y=7
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Sarkar Gupta 6 years, 3 months ago
- 2 answers
Related Questions
Posted by Ananya Singh 1 year, 4 months ago
- 0 answers
Posted by Sanjna Gupta 1 year, 2 months ago
- 4 answers
Posted by Sneha Pandey 1 year, 3 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 0 answers
Posted by Karan Kumar Mohanta 1 year, 3 months ago
- 0 answers
Posted by Charu Baid 1 year, 2 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 3 answers
Posted by Sanjay Kumar 1 year, 3 months ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years, 3 months ago
Matrix form of given equations is AX = B
{tex}\Rightarrow \left[ {\begin{array}{*{20}{c}} 4&{ - 3} \\ 3&{ - 5} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3 \\ 7 \end{array}} \right]{/tex}
Here {tex}A = \left[ {\begin{array}{*{20}{c}} 4&{ - 3} \\ 3&{ - 5} \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right]{/tex} and {tex}B = \left[ {\begin{array}{*{20}{c}} 3 \\ 7 \end{array}} \right]{/tex}
{tex}\therefore \left| A \right| = \left| {\begin{array}{*{20}{c}} 4&{ - 3} \\ 3&{ - 5} \end{array}} \right| {/tex} = - 20 - (-9) = - 20 + 9 = - 11 {tex} \ne {/tex} 0
Therefore, solution is unique and {tex}X = {A^{ - 1}}B = \frac{1}{{\left| A \right|}}\left( {adj.A} \right)B{/tex}
{tex}\Rightarrow \left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right] = \frac{1}{{ - 11}}\left[ {\begin{array}{*{20}{c}} { - 5}&3 \\ { - 3}&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3 \\ 7 \end{array}} \right]{/tex}
{tex}= \frac{1}{{ - 11}}\left[ {\begin{array}{*{20}{c}} { - 15 + 21} \\ { - 9 + 28} \end{array}} \right] = \frac{1}{{ - 11}}\left[ {\begin{array}{*{20}{c}} 6 \\ 9 \end{array}} \right]{/tex}
{tex}= \left[ {\begin{array}{*{20}{c}} {\frac{{ - 6}}{{11}}} \\ {\frac{{ - 19}}{{11}}} \end{array}} \right]{/tex}
Therefore, {tex}x = \frac{{ - 6}}{{11}}{/tex} and {tex}y = \frac{{ - 19}}{{11}}{/tex}
0Thank You