What will be the integral of …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Atul Kushwaha 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Charu Baid 1 year, 2 months ago
- 0 answers
Posted by Ananya Singh 1 year, 4 months ago
- 0 answers
Posted by Sneha Pandey 1 year, 3 months ago
- 0 answers
Posted by Karan Kumar Mohanta 1 year, 3 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 0 answers
Posted by Sanjna Gupta 1 year, 2 months ago
- 4 answers
Posted by Sanjay Kumar 1 year, 3 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 3 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years, 4 months ago
Let {tex}I = \int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {{{\sin }^2}xdx} {/tex}
{tex}= 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}xdx} {/tex} ...(i)
{tex}{\because \int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx,} } }{/tex} when f(x) is even function]
{tex}\Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}\left( {\frac{\pi }{2} - x} \right)dx} {/tex}
{tex}\left[ {\because \int\limits_0^a {f\left( x \right)dx = \int\limits_0^a {f\left( {a - x} \right)dx = } } } \right]{/tex}
{tex}\Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}xdx} {/tex} …(ii)
Adding eq. (i) and (ii),
{tex}2I = 2\int\limits_0^{\frac{\pi }{2}} {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)dx} {/tex}
{tex}= 2\int\limits_0^{\frac{\pi }{2}} {1dx} {/tex}
{tex}= 2\left( x \right)_0^{\frac{\pi }{2}}{/tex}
{tex} = 2.\frac{\pi }{2} = \pi {/tex}
{tex}\Rightarrow I = \frac{\pi }{2}{/tex}
0Thank You