No products in the cart.

What will be the integral of …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

What will be the integral of sin^2 x
  • 1 answers

Sia ? 6 years, 4 months ago

Let {tex}I = \int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {{{\sin }^2}xdx} {/tex}

{tex}= 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}xdx} {/tex} ...(i)

 {tex}{\because \int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx,} } }{/tex} when f(x) is even function]

{tex}\Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}\left( {\frac{\pi }{2} - x} \right)dx} {/tex}

{tex}\left[ {\because \int\limits_0^a {f\left( x \right)dx = \int\limits_0^a {f\left( {a - x} \right)dx = } } } \right]{/tex}

{tex}\Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}xdx} {/tex} …(ii)

Adding eq. (i) and (ii),

{tex}2I = 2\int\limits_0^{\frac{\pi }{2}} {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)dx} {/tex}

{tex}= 2\int\limits_0^{\frac{\pi }{2}} {1dx} {/tex}

{tex}= 2\left( x \right)_0^{\frac{\pi }{2}}{/tex}

{tex} = 2.\frac{\pi }{2} = \pi {/tex}

{tex}\Rightarrow I = \frac{\pi }{2}{/tex}

http://mycbseguide.com/examin8/

Related Questions

Three friends Ravi Raju
  • 0 answers
Y=sin√ax^2+√bx+√c
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App