No products in the cart.

If A,B, C are three non-Zero …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If A,B, C are three non-Zero matrix of same order. Find the condition on A such that AB=AC. B=C
  • 2 answers

Sia ? 6 years, 4 months ago

Let {tex}A = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2&3 \\ 4&0 \end{array}} \right]{/tex} and {tex}C = \left[ {\begin{array}{*{20}{c}} 2&3 \\ 4&4 \end{array}} \right]\left[ {\because B \ne C} \right]{/tex}
{tex}\therefore AB = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&3 \\ 4&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&3 \\ 0&0 \end{array}} \right]{/tex} ....(i)
And {tex}\therefore AC = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} 2&3 \\ 4&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&3 \\ 0&0 \end{array}} \right]{/tex} .....(ii)
Thus, we see that AB = AC [using Eqs. (i) and (ii)]
Where, A is non-zero matrix but {tex}B \ne C{/tex}

Rahul Gupta 6 years, 4 months ago

A is an identity matrix of the required order
http://mycbseguide.com/examin8/

Related Questions

Three friends Ravi Raju
  • 0 answers
Y=sin√ax^2+√bx+√c
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App