Prove that cos( sin inverse 3/5+cot …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Asif Parwez 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Ananya Singh 1 year, 4 months ago
- 0 answers
Posted by Sanjna Gupta 1 year, 2 months ago
- 4 answers
Posted by Sneha Pandey 1 year, 3 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 3 answers
Posted by Charu Baid 1 year, 2 months ago
- 0 answers
Posted by Karan Kumar Mohanta 1 year, 3 months ago
- 0 answers
Posted by Sanjay Kumar 1 year, 3 months ago
- 0 answers
Posted by Xxxxxx Xx 1 year, 2 months ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years, 4 months ago
Here, we have to prove that {tex} \cos \left[\sin ^ { - 1 }( \frac { 3 } { 5 } )+ \cot ^ { - 1 }( \frac { 3 } { 2 } \right) ]= \frac { 6 } { 5 \sqrt { 13 } }{/tex}
Let us consider , {tex} \sin ^ { - 1 } (\frac { 3 } { 5 }) = x{/tex} and {tex} \cot ^ { - 1 } (\frac { 3 } { 2 }) = y ; \forall x \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]{/tex}
and {tex} y \in ( 0 , \pi ){/tex}
{tex} \Rightarrow \quad \sin x = \frac { 3 } { 5 }{/tex}and {tex}\cot y = \frac { 3 } { 2 }{/tex}
{tex}\Rightarrow \quad \cos x = \sqrt { 1 - \sin ^ { 2 } x }{/tex}and
cosec y ={tex}\sqrt { 1 + \cot ^ { 2 } y }{/tex}{tex}\left[ \begin{array} { l } { \text { taking positive sign as } x \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right] } \\ { \text { and } y \in ( 0 , \pi ) } \end{array} \right]{/tex}
{tex}\Rightarrow \cos x = \sqrt { 1 - \left( \frac { 3 } { 5 } \right) ^ { 2 } }{/tex}and cosec y {tex}= \sqrt { 1 + \left( \frac { 3 } { 2 } \right) ^ { 2 } }{/tex}
{tex}\Rightarrow \quad \cos x = \sqrt { 1 - \frac { 9 } { 25 } }{/tex}and cosec y {tex} = \sqrt { 1 + \frac { 9 } { 4 } }{/tex}
{tex}\Rightarrow \quad \cos x = \sqrt { \frac { 25 - 9 } { 25 } } = \sqrt { \frac { 16 } { 25 } } = \frac { 4 } { 5 }{/tex}
and cosec y {tex} = \sqrt { \frac { 4 + 9 } { 4 } } = \sqrt { \frac { 13 } { 4 } } = \frac { \sqrt { 13 } } { 2 }{/tex}
{tex}\Rightarrow \quad \cos x = \frac { 4 } { 5 }{/tex} and {tex}\frac { 1 } { \sin y } = \frac { \sqrt { 13 } } { 2 }{/tex}
{tex}\Rightarrow \quad \cos x = \frac { 4 } { 5 }{/tex} and {tex}\sin y = \frac { 2 } { \sqrt { 13 } }{/tex}
Also, cosy = siny - coty = {tex} \frac { 2 } { \sqrt { 13 } } \times \frac { 3 } { 2 } = \frac { 3 } { \sqrt { 13 } }{/tex}
Now, cos(x + y) = cosx cosy - sinx siny {tex} = \frac { 4 } { 5 } \times \frac { 3 } { \sqrt { 13 } } - \frac { 3 } { 5 } \times \frac { 2 } { \sqrt { 13 } }{/tex}{tex} = \frac { 12 } { 5 \sqrt { 13 } } - \frac { 6 } { 5 \sqrt { 13 } } = \frac { 6 } { 5 \sqrt { 13 } } = \mathrm { RHS }{/tex}
Hence proved.
3Thank You