No products in the cart.

Prove that opposite sides of quadrilateral …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Prove that opposite sides of quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle
  • 1 answers

Sia ? 5 years, 5 months ago

Given: ABCD is a quadrilateral circumscribing a circle whose centre is O.
To prove:

  1. {tex}\angle{/tex}AOB + {tex}\angle{/tex}COD = 180o
  2. {tex}\angle{/tex}BOC + {tex}\angle{/tex}AOD = 180o

Construction: Join OP, OQ, OR and OS.
 
Proof: Since tangents from an external point to a circle are equal.
{tex}\therefore{/tex} AP = AS,
BP = BQ ........ (i)
CQ = CR
DR = DS
In {tex}\triangle{/tex}OBP and {tex}\triangle{/tex}OBQ,
OP = OQ [Radii of the same circle]
OB = OB [Common]
BP = BQ [From eq. (i)]
{tex}\therefore{/tex} {tex}\triangle{/tex}OPB {tex}\cong{/tex} {tex}\triangle{/tex}OBQ [By SSS congruence criterion]
{tex}\therefore{/tex} {tex}\angle{/tex}1 = {tex}\angle{/tex}2 [By C.P.C.T.]
Similarly, {tex}\angle{/tex}3 = {tex}\angle{/tex}4, {tex}\angle{/tex}5 = {tex}\angle{/tex}6, {tex}\angle{/tex}7 = {tex}\angle{/tex}8
Since, the sum of all the angles round a point is equal to 360o.
{tex}\therefore{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}2 + {tex}\angle{/tex}3 + {tex}\angle{/tex}4+ {tex}\angle{/tex}5 + {tex}\angle{/tex}6 + {tex}\angle{/tex}7 + {tex}\angle{/tex}8 = 360o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}4+ {tex}\angle{/tex}5 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8 + {tex}\angle{/tex}8 = 360o
{tex}\Rightarrow{/tex}  2 ({tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8)  = 360o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8 = 180o
{tex}\Rightarrow{/tex} ({tex}\angle{/tex}1 + {tex}\angle{/tex}5)  + ({tex}\angle{/tex}4 + {tex}\angle{/tex}8) = 180o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}AOB + {tex}\angle{/tex}COD = 180o
Similarly we can prove that
{tex}\angle{/tex}BOC + {tex}\angle{/tex}AOD = 180o

http://mycbseguide.com/examin8/

Related Questions

(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Water
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App