an agriculture field is in the …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
an agriculture field is in the form of a rectangle of length 20 m width 14 m. A 10 m deep well of diameter 7 m is dug in a corner of the field and the earth taken out of the well is spread evently over the remaining part of the field. find the rise in its level
Posted by Ram G 5 years, 6 months ago
- 1 answers
Related Questions
Posted by Hari Anand 4 weeks, 1 day ago
- 0 answers
Posted by Kanika . 2 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 4 months, 1 week ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers
Posted by Lakshay Kumar 3 weeks, 1 day ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 6 months ago
We have,
Radius of the well = {tex}\frac { 7 } { 2 },{/tex}Depth of the well = 10 m
{tex}\therefore{/tex} = Volume of the earth dug {tex}= \pi \left( \frac { 7 } { 2 } \right) ^ { 2 } \times 10 \mathrm { m } ^ { 3 } = \frac { 22 } { 7 } \times \frac { 7 } { 2 } \times \frac { 7 } { 2 } \times 10 \mathrm { m } ^ { 3 } = 358 \mathrm { m } ^ { 3 }{/tex}
Also, we have
Length of the field = 20 m, Breadth of the field = 14 m
{tex}\therefore{/tex} Area of the field = {tex}20 \times 14 \mathrm { m } ^ { 2 } = 280 \mathrm { m } ^ { 2 }{/tex}
Area of the base of the well = {tex}\pi \times \left( \frac { 7 } { 2 } \right) ^ { 2 } \mathrm { m } ^ { 2 } = \frac { 22 } { 7 } \times \frac { 7 } { 2 } \times \frac { 7 } { 2 } \mathrm { m } ^ { 2 } = \frac { 77 } { 2 } \mathrm { m } ^ { 2 }{/tex}
{tex}\therefore{/tex} Area of the remaining part of the field = Area of the field - Area of the base of the field
{tex}= \left( 280 - \frac { 77 } { 2 } \right) m ^ { 2 } = \left( \frac { 560 - 77 } { 2 } \right) m ^ { 2 } = \frac { 483 } { 2 } m ^ { 3 }{/tex}
Let the rise in the level of the field be h metres.
{tex}\therefore{/tex} Volume of the raised field = Area of the base {tex}\mathbf \times {/tex}Height = {tex}\left( \frac { 483 } { 2 } \times h \right) \mathrm { m } ^ { 3 }{/tex}
But, Volume of the raised field = Volume of the earth dugout
{tex}\therefore \quad \frac { 483 } { 2 } \times h = 385{/tex}
{tex}\Rightarrow \quad h = \frac { 2 \times 385 } { 483 } = \frac { 770 } { 483 } = 1.594 \mathrm { m }{/tex}
Hence, rise in the level of the field = 1.594 m.
0Thank You