If a≠b≠c,then prove that the points …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Nikhil Kumar 5 years, 4 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 4 months, 2 weeks ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
Posted by Kanika . 2 months, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 3 weeks, 4 days ago
- 0 answers
Posted by Hari Anand 1 month ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 4 months ago
Let A(a, a2), B(b, b2) and C(c, c2) be the given points.
{tex}\therefore{/tex}Area of {tex}\Delta A B C{/tex}
{tex}= \frac { 1 } { 2 } \left\{ a \left( b ^ { 2 } - c ^ { 2 } \right) + b \left( c ^ { 2 } - a ^ { 2 } \right) + c \left( a ^ { 2 } - b ^ { 2 } \right) \right\}{/tex}
{tex}= \frac { 1 } { 2 } \left\{ a b ^ { 2 } - a c ^ { 2 } + b c ^ { 2 } - b a ^ { 2 } + c a ^ { 2 } - c b ^ { 2 } \right\}{/tex}
{tex}= \frac { 1 } { 2 } \times 0{/tex} [if a = b = c]
=0
i.e., the points are collinear if a = b = c
Hence, the points can never be collinear if {tex}a \neq b \neq c.{/tex}
0Thank You