If a≠b≠c,then prove that the points …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Nikhil Kumar 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let A(a, a2), B(b, b2) and C(c, c2) be the given points.
{tex}\therefore{/tex}Area of {tex}\Delta A B C{/tex}
{tex}= \frac { 1 } { 2 } \left\{ a \left( b ^ { 2 } - c ^ { 2 } \right) + b \left( c ^ { 2 } - a ^ { 2 } \right) + c \left( a ^ { 2 } - b ^ { 2 } \right) \right\}{/tex}
{tex}= \frac { 1 } { 2 } \left\{ a b ^ { 2 } - a c ^ { 2 } + b c ^ { 2 } - b a ^ { 2 } + c a ^ { 2 } - c b ^ { 2 } \right\}{/tex}
{tex}= \frac { 1 } { 2 } \times 0{/tex} [if a = b = c]
=0
i.e., the points are collinear if a = b = c
Hence, the points can never be collinear if {tex}a \neq b \neq c.{/tex}
0Thank You