No products in the cart.

If the roots of the quadratic …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If the roots of the quadratic equation (a square+ b square)x square-2(ac+bd)x+(c square + d square)are equal then prove that a/b=c/d
  • 1 answers

Sia ? 5 years, 5 months ago

According to the question,the given equation is,
(a2 + b2)x2 - 2(ac + bd)x + (c2 + d2) = 0
The discriminant of the given equation is given by
D = [-2(ac + bd)]2 - 4 {tex}\times{/tex} (a2 + b2) {tex}\times{/tex} (c2 + d2)
{tex}\Rightarrow{/tex} D = 4(ac + bd)2 - 4(a2c2 + a2d2 + b2c2 + b2d2)
{tex}\Rightarrow{/tex} D = 4(a2c2 + b2d2 + 2abcd) - 4(a2c2 + a2d2 + b2c2 + b2d2)
{tex}{/tex}
{tex}{/tex}D= 4(2abcd - a2d2 - b2c2)
{tex}\Rightarrow{/tex} D = -4[(ad)2 + (bc)2 - 2(ad)(bc)]
{tex}\Rightarrow{/tex} D = -4(ad - bc)2
Since the roots of the given equation are given to be equal, therefore,
Discriminant, D = 0
{tex}\Rightarrow{/tex} -4(ad - bc)2 = 0
{tex}\Rightarrow{/tex} (ad - bc)2 = 0  [as -4 {tex}\ne{/tex} 0]
{tex}\Rightarrow{/tex} ad - bc = 0
{tex}\Rightarrow{/tex} ad = bc
{tex} \Rightarrow \frac{a}{b} = \frac{c}{d}{/tex}

http://mycbseguide.com/examin8/

Related Questions

(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Water
  • 0 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App