If the roots of the quadratic …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 3 weeks, 2 days ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 4 months, 2 weeks ago
- 2 answers
Posted by Kanika . 2 months, 2 weeks ago
- 1 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 5 months ago
According to the question,the given equation is,
(a2 + b2)x2 - 2(ac + bd)x + (c2 + d2) = 0
The discriminant of the given equation is given by
D = [-2(ac + bd)]2 - 4 {tex}\times{/tex} (a2 + b2) {tex}\times{/tex} (c2 + d2)
{tex}\Rightarrow{/tex} D = 4(ac + bd)2 - 4(a2c2 + a2d2 + b2c2 + b2d2)
{tex}\Rightarrow{/tex} D = 4(a2c2 + b2d2 + 2abcd) - 4(a2c2 + a2d2 + b2c2 + b2d2)
{tex}{/tex}
{tex}{/tex}D= 4(2abcd - a2d2 - b2c2)
{tex}\Rightarrow{/tex} D = -4[(ad)2 + (bc)2 - 2(ad)(bc)]
{tex}\Rightarrow{/tex} D = -4(ad - bc)2
Since the roots of the given equation are given to be equal, therefore,
Discriminant, D = 0
{tex}\Rightarrow{/tex} -4(ad - bc)2 = 0
{tex}\Rightarrow{/tex} (ad - bc)2 = 0 [as -4 {tex}\ne{/tex} 0]
{tex}\Rightarrow{/tex} ad - bc = 0
{tex}\Rightarrow{/tex} ad = bc
{tex} \Rightarrow \frac{a}{b} = \frac{c}{d}{/tex}
0Thank You