No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sudhanshu Kumar 3 years, 10 months ago

Send pic
  • 2 answers

Ashtdev Giri 3 years, 10 months ago

Isme kya Karna Hai differentiation ya integration

Pankaj Arya 3 years, 10 months ago

Krnaaa kyqaw chz differ. And integral
  • 3 answers

Ashtdev Giri 3 years, 10 months ago

-cos (ax+b) sin(ax+b)

Rohan Chaudhary ??? 3 years, 10 months ago

This is became identity of sinx.cosy

Dynamo Gaming 3 years, 10 months ago

bhai sin ya cos kisi ko bhi itnterate kar do
  • 2 answers

Rohan Chaudhary ??? 3 years, 10 months ago

Yes it is to easy 123yz

Yash Agarwal 3 years, 10 months ago

123yz
  • 1 answers

Aditi Mishra 3 years, 10 months ago

[5 3root3 9 - 2 2 - 6]
  • 1 answers

Aditi Mishra 3 years, 10 months ago

An implicit function is a function that is defined implicitly by an implicit equation, by associating one of the variables (the value) with the others (the arguments). Thus, an implicit function for y in the context of the unit circle is defined implicitly by x2 + f(x)2 − 1 = 0.
  • 1 answers

Yash Agarwal 3 years, 10 months ago

Sec(x+π/4)
  • 3 answers

Nivrit Raj 3 years, 10 months ago

Put y=x^2 and solve it by using integration by partial fraction

Mahi Kumari 3 years, 10 months ago

The Right answer of this question should be:- I = (-1/√2)tan^(-1)(x/√2)+(2/√3)tan^(-1)(x/√3)+C

Mahi Kumari 3 years, 10 months ago

Substitute x²=t and its derivative will be 2x=dt/dx then, put dx= dt/2x and x=√t and dx=dt/2√t. Now Solve the Required equation by the help of partial fraction. And finally integrate it!!
  • 2 answers

Nirjhara Rai 3 years, 10 months ago

Is it strictly increasing/decreasing or only increasing/decreasing

Ash Varshney 3 years, 10 months ago

The derivative of a function may be used to determine whether the function is increasing or decreasing on any intervals in its domain. If f′(x) > 0, then f is increasing on the interval, and if f′(x) < 0, then f is decreasing on the interval. ...
  • 1 answers

Nivrit Raj 3 years, 10 months ago

Mainly by applying product method That is :- 1 integration of 2-integration{d/DX of 1and integration of 2}
  • 1 answers

Vaibhav Yadav 3 years, 10 months ago

Log(dy/dx)=ax+by => dy/dx=e^{ax+by} => dy/dx=e^(ax).e^(by) => dy/e^(by)=e^(ax)dx =>e^(-by)dy=e^(ax)dx Integrating both sides, -e^(-by)/b=e^(ax)/a + c
  • 0 answers
  • 2 answers

K S 3 years, 10 months ago

I need gf

Mahi Kumari 3 years, 10 months ago

Answer of this question should be:- (a)^x/(b)^x{log(a)-log(b)} Method of solving for this question as integration of (a)^x= (a)^x/log(a)
  • 1 answers

Sajjad Khan 3 years, 10 months ago

Yes it is said to be equivalence relation.
  • 1 answers

Kanishk Gupta 3 years, 10 months ago

x + sinx - cosx +c
  • 2 answers

Abhinav Agarwal 3 years, 10 months ago

Thanks Aditi but can you please explain it..

Aditi Mishra 3 years, 10 months ago

17/18
  • 1 answers

Sia ? 3 years, 5 months ago

We have given
y = x-7/(x-2)(x-3)......(i)
Let (i) cuts the x-axis at (x, 0)
​then x-7/(x-2)(x-3) =0 =>x=7
the required point is (7, 0).
Differentiating equation (i) w.r.t. x, we get

  • 0 answers
  • 3 answers

Tanay Bhushan 3 years, 10 months ago

at π/4 dy/dx=1

Tanay Bhushan 3 years, 10 months ago

dx/dQ=-asinQ+aQcosQ+asinQ dx/dQ=aQcosQ -(1) dy/dQ= acosQ+aQsinQ-acosQ dy/dQ= aQsinQ -(2) From eq first and second we have dividing eq (2) by eq(1) dy/dx=(dy/dq) /(dq/dx) So dy/dx=(aQsinQ) /(aQcosQ) dy/dx=tanQ

Tuleshwar Sahu 3 years, 10 months ago

2+45
  • 1 answers

Aditi Bajpai 3 years, 10 months ago

P(EnF)=P(E)+P(F)-P(EuF)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App