No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Preeti Dabral 2 years ago

  1. (c) Let C(x) be the maintenance cost function, then C(x) = 5000000 + 160x - 0.04x2
  2. (b) We have, C(x) = 5000000 + 160x - 0.04x2
    Now, C{x) = 160 - 0.08x
    For maxima/minima, put C'(x) = 0
    {tex}\Rightarrow{/tex} 160 = 0.08x
    {tex}\Rightarrow{/tex} x = 2000
  3. (b) Clearly, from the given condition we can see that we only want critical points that are in the interval [0, 4500]
    Now, we have C(0) = 5000000
    C(2000) = 5160000 and C(4500) = 4910000
    {tex}\therefore{/tex} Maximum value of C(x) would be ₹5160000
  4. (a) The complex must have 4500 apartments to minimise the maintenance cost.
  5. (a) The minimum maintenance cost for each apartment woud be ₹1091.11
  • 1 answers

Preeti Dabral 1 year, 11 months ago

{tex}\int {x\log 2xdx} {/tex}

{tex} = \int {\left( {\log 2x} \right)xdx} {/tex}

{tex}= \left( {\log 2x} \right)\int {xdx - \int {\left[ {\frac{d}{{dx}}\log 2x\int {xdx} } \right]dx} } {/tex}

[Applying product rule]

{tex}= \left( {\log 2x} \right)\frac{{{x^2}}}{2} - \int {\frac{1}{{2x}}.2.\frac{{{x^2}}}{2}dx} {/tex}

{tex} = \frac{1}{2}{x^2}\log 2x - \frac{1}{2}\int {xdx} {/tex}

{tex}= \frac{1}{2}{x^2}\log 2x - \frac{1}{2}\frac{{{x^2}}}{2} + c{/tex}

{tex}= \frac{{{x^2}}}{2}\log 2x - \frac{{{x^2}}}{4} + c{/tex}

  • 2 answers

Dhairya Sharma 2 years ago

Hii rashmi you are from which class

Rashmi Ahuja 2 years ago

Root(1+cos x) =root(2cos² (x/2)) =√2.cos x/2 Ans= Integral of 1/√2 cos x/2 = Integral of sec (x/2)/√2 = (1/√2) log |sec x/2 + tan x/2| ÷ (1/2) = √2 log |sec x/2 + tan x/2|
  • 0 answers
  • 1 answers

Preeti Dabral 1 year, 11 months ago

Given: {tex}y = {\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right){/tex}

To simplify the given Inverse Trigonometric function,we put, {tex}x = \tan \theta{/tex} 

{tex}\Rightarrow y = {\sin ^{ - 1}}\left( {\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right) = {\sin ^{ - 1}}\left( {\sin 2\theta } \right) = 2\theta{/tex}

{tex}\Rightarrow y = 2{\tan ^{ - 1}}x{/tex}

{tex}\Rightarrow \frac{{dy}}{{dx}} = 2.\frac{1}{{1 + {x^2}}} = \frac{2}{{1 + {x^2}}}{/tex}

  • 1 answers

Satinder Kaur Sidhu 2 years, 1 month ago

1/x
  • 0 answers
  • 1 answers

Karan Chauhan 2 years, 1 month ago

x³/3+x²/2+x+c
  • 1 answers

Preeti Dabral 1 year, 11 months ago

{tex}\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} 2x + 1{/tex}
{tex}\mathop {\lim }\limits_{h \to 0} \left[ {2\left( {2 - h} \right) + 1} \right]{/tex} = 5
{tex}= \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {3x -1} \right){/tex}
{tex} = \mathop {\lim }\limits_{h \to 0} 3\left( {2 + h} \right) - 1{/tex} = 5
In given that question f(x) is continuous at x=2,therefore
{tex} \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f(2) = \mathop {\lim }\limits_{x \to {2^ + }} f(x){/tex}
5 = k 
{tex}\Rightarrow k = 5{/tex}

  • 1 answers

The Thakur Shahab 2 years, 1 month ago

1
  • 0 answers
  • 3 answers

Manglam Pandey 2 years, 1 month ago

Cos^2x-sin^2x

Tec Om 2 years, 1 month ago

product rule lagao 1st d/dx of2nd +2nd d/dx of 1st then aa jayega -sin^2x +cosx^2 that is cos2x

Dhruv Shukla 2 years, 1 month ago

Cos2x
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Aryan Aryan 2 years, 2 months ago

Iska differentiation karna hai kya
  • 1 answers

S Abhishek Kumar 2 years, 2 months ago

all real number except 0
  • 1 answers

Waheguru Ji Ji 2 years, 2 months ago

Y
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App