No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sparsh Yadav 6 years ago

It cannot be expanded .only we can find some terms such as first term ,last termmiddle ,general terms
  • 1 answers
The equation of the circle is, (x – h)2 + (y – k)2 = r2 ….(i) Since the circle passes through point (2, 3) ∴ (2 – h)2 + (3 – k)2 = r2 ⇒ 4 + h2 – 4h + 9 + k2 – 6k = r2 ⇒ h2+ k2 – 4h – 6k + 13 = r2 ….(ii) Also, the circle passes through point (-1, 1) ∴ (-1 – h)2 + (1 – k)2 = r2 ⇒ 1 + h2 + 2h + 1 + k2 – 2k = r2 ⇒ h2 + k2 + 2h – 2k + 2 = r2 ….(iii) From (ii) and (iii), we have h2 + k2 – 4h – 6k + 13 = h2 + k2 + 2h – 2k + 2 ⇒ -6h – 4k = -11 ⇒ 6h + 4k = 11 …(iv) Since the centre (h, k) of the circle lies on the line x – 3y-11 = 0. ∴ h – 3k – 11 = 0 ⇒ h -3k = 11 …(v) Solving (iv) and (v), we get h = \frac { 7 }{ 2 } and k = \frac { -5 }{ 2 } Putting these values of h and k in (ii), we get \left( \frac { 7 }{ 2 } \right) ^{ 2 }+\left( \frac { -5 }{ 2 } \right) ^{ 2 }-\frac { 4\times 7 }{ 2 } -6\times \frac { -5 }{ 2 } +13={ r }^{ 2 } ⇒ \frac { 49 }{ 4 } +\frac { 25 }{ 4 } -14+15+13 ⇒ { r }^{ 2 }=\frac { 65 }{ 2 } Thus required equation of circle is ⇒ \left( x-\frac { 7 }{ 2 } \right) ^{ 2 }+\left( y+\frac { 5 }{ 2 } \right) ^{ 2 }=\frac { 65 }{ 2 } ⇒ { x }^{ 2 }+\frac { 49 }{ 4 } -7x+{ y }^{ 2 }+\frac { 25 }{ 4 } +5y=\frac { 65 }{ 2 } ⇒ 4x2 + 49 – 28x + 4y2 + 25 + 20y = 130 ⇒ 4x2 + 4y2 – 28x + 20y – 56 = 0 ⇒ 4(x2 + y2 – 7x + 5y -14) = 0 ⇒ x2 + y2 – 7x + 5y -14 = 0.
  • 2 answers

Poshika Dhir 6 years ago

In this AP a=8and d=11-8=3 Sn=n/2[2a+(n-1)d] =n/2[2x8+(n-1)3] =n/2 [16+(n-1)3] Replace n by n-1 Sn-1=n-1/2[2x8+(n-1-1)3] =n-1/2[16+(n-2)3] Now Sn-Sn-1=n/2[16+(n-1)3]-n-1/2[+(n-2)3] Now on solving you will get the answer hope it will help you thanks

Chiru Yavvari 6 years ago

Vnnk
  • 0 answers
  • 1 answers

Madhur Gupta 6 years ago

Just take up a print out of whole answersheet lol
  • 1 answers
Cauchy-Schwarz inequality the theorem that the square of the integral of the product of two functions is less than or equal to the product of the integrals of the square of each function
  • 1 answers
Cauchy-Schwarz inequality the theorem that the square of the integral of the product of two functions is less than or equal to the product of the integrals of the square of each function
  • 0 answers
  • 3 answers

Madhav Pathak 6 years ago

What class did you read

Madhav Pathak 6 years ago

Because some say that 2+2 is =22 that why

Nidhi Sharma 6 years, 1 month ago

Can I ask, this question came in your mind. why
  • 9 answers

Nidhi Sharma 6 years, 1 month ago

3

Bijender Jha 6 years, 1 month ago

3

Navneet Ranjan 6 years, 1 month ago

3

Shivam Saraswat 6 years, 1 month ago

By bodmas Answer is 2

Dinesh.Kr. Yadav 6 years, 1 month ago

2

Madhav Pathak 6 years, 1 month ago

6 when answer mutiply by 2

Utkarsh Singh 6 years, 1 month ago

3

Dheeraj Solanki 6 years, 1 month ago

3

Nancy Vashisht 6 years, 1 month ago

2+(2/2)=2+1=3(by bodmas)

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App