No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 4 months ago

Let the speed of boat is x km/h in still water and stream y km/h
According to question,
{tex}\frac{{30}}{{x - y}} + \frac{{44}}{{x + y}} = 10{/tex}
and {tex}\frac{{40}}{{x - y}} + \frac{{55}}{{x + y}} = 13{/tex}
Let {tex}\frac{1}{{x - y}} = u{/tex} and {tex}\frac{1}{{x + y}} = v{/tex}
30u + 44v = 10 ...(i)
40u + 55v = 13 ....(ii)
on solving eq. (i) and (ii) we get,
{tex}u = \frac{1}{5} \Rightarrow x - y = 5{/tex} ....(iii)
{tex}v = \frac{1}{{11}} \Rightarrow x + y = 11{/tex} ....(iv)
On solving eq. (iii) and (iv) we get,
x = 8km/h
y = 3km/h

  • 3 answers

Harman Haru 7 years, 3 months ago

Sin 90-75

Abhi Arora 7 years, 3 months ago

Sin (90-67) + cos (90-75) =cos23+sin15

Anushka Agrawal 5 years, 8 months ago

Sin(90°-67°) + Cos (90°-75°) Cos 23° + Sin 15° (ans)
  • 0 answers
  • 1 answers

Shubham Yadav 7 years, 3 months ago

Value of any fraction
  • 2 answers

Ritesh Bishal 7 years, 3 months ago

But how

Shubham Yadav 7 years, 3 months ago

Due to mistake
  • 1 answers

Mohit Singh 7 years, 3 months ago

2+1+2=5
  • 0 answers
  • 2 answers

Deva Priya 7 years, 3 months ago

Subject???

Chandra ... 7 years, 3 months ago

Which subject
  • 1 answers

Sia ? 6 years, 4 months ago

According to question it is given that ABCD is a quadrilateral in which the bisectors of {tex}\angle{/tex}ABC and {tex}\angle{/tex}ADC meet on the diagonal AC at P.
TO PROVE: Bisectors of {tex}\angle{/tex}BAD and {tex}\angle{/tex}BCD meet on the diagonal BD
CONSTRUCTION: Join BP and DP. Let us suppose that  the bisector of {tex}\angle{/tex}BAD meet BD at Q. Now, Join AQ and CQ.
PROOF: In order to prove that the bisectors of {tex}\angle{/tex}BAD and {tex}\angle{/tex}BCD meet on the diagonal BD, we have to prove that CQ is a bisector of∠BCD for which we will prove that Q divides BD in the ratio BC: DC.

In {tex}\Delta{/tex}ABC, BP is the bisector of {tex}\angle{/tex}ABC.( According to question)

{tex}\therefore \quad \frac { A B } { B C } = \frac { A P } { P C }{/tex} .......................(i)  
In {tex}\Delta{/tex}ACD, DP is the bisector of {tex}\angle{/tex}ADC.(as per fig)
{tex}\therefore \quad \frac { A D } { D C } = \frac { A P } { P C }{/tex} .....................(ii)
Therefore, from (i) and (ii), we get
{tex}\frac { A B } { B C } = \frac { A D } { D C }{/tex}
{tex}\Rightarrow \quad \frac { A B } { A D } = \frac { B C } { D C }{/tex}.................... ...(iii)
Again, In {tex}\Delta{/tex} ABD, AQ is the bisector of {tex}\angle{/tex}BAD. [By construction]
{tex}\therefore \quad \frac { A B } { A D } = \frac { B Q } { D Q }{/tex} .............(iv)
From (iii) and (iv), we get

 {tex}\frac { B C } { D C } = \frac { B Q } { D Q }.{/tex}
Hence, in {tex}\Delta{/tex}CBD, Q divides BD in the ratio of  CB: CD.

Thus, CQ is the bisector of {tex}\angle{/tex}BCD.

Therefore, the bisectors of {tex}\angle{/tex}BAD and {tex}\angle{/tex}BCD meet on the diagonal BD.( Hence proved)

  • 1 answers

Anurag Kaushal 7 years, 3 months ago

x(x square - 2) x square - 2= 0 x=√2 OR X=0
  • 2 answers

Bubbly Singh 7 years, 3 months ago

(0-x)^2+(0-y)^2=x^2+y^2

Mohit Prasad 7 years, 3 months ago

✓x2+y2   ( pathagores thorem)

  • 1 answers

Harsh Pratap Singh ,V 7 years, 3 months ago

X+y=7 X=7-y In eq2 we put the value x Y+x=11 Y+7-y=11 Y=4 X+y=7 X+4=7 X=3
  • 0 answers
  • 1 answers

Kartik . 7 years, 3 months ago

√3÷2×√3÷2+1÷3×1÷2 =3÷4+1÷4 =3+1÷4 =4÷4 =1 ans
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

We have to find the points on  X-axis which are at a distance of {tex}2\sqrt5{/tex} from the point(7,-4). Also,we will  how many such points are there.
Let, the point on X-axis be (x,0).
Now, by using distance formula,

{tex}\sqrt{(x_{2\;}-\;x_1)^2+\;(y_2-\;y_2)^2} {/tex}
{tex}\sqrt{(x-7)^2+(0+4)^2}= 2\sqrt5{/tex}

Squaring both sides,

{tex}\Rightarrow (x-7)^2+4^2=(2\sqrt5)^2{/tex}

{tex}\Rightarrow x^2 - 14x + 49 + 16 = 20{/tex}

{tex}\Rightarrow x^2-14x+45=0{/tex}
{tex}\Rightarrow {/tex} (x - 9) (x - 5) = 0

{tex}\Rightarrow x=9 \;or\;x=5{/tex}

Hence, two points exists (9,0) and (5,0)

  • 1 answers

Sia ? 6 years, 4 months ago

Let the ten's place digit be y and unit's place be x.
Therefore, number is 10y + x.

According to given condition,

10y + x = 4(x + y) and 10y + x = 2xy
{tex}\Rightarrow{/tex} x = 2y and 10y + x = 2xy
Putting x = 2y in 10y + x = 2xy
10y + 2y = 2.2y.y

12y = 4y
4y2 - 12y = 0 {tex}\Rightarrow{/tex} 4y(y - 3) = 0
{tex}\Rightarrow{/tex} y - 3 = 0 or y = 3
Hence, the ten's place digit is 3 and units digit is 6 (2y = x)
Hence the required number is 36.

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

First find  the HCF of 65 and 117 by Using Euclid's division algorithm,
117 = 65{tex}\times{/tex} 1 + 52
65 = 52{tex}\times{/tex} 1 + 13
52 = 13{tex}\times{/tex} 4 + 0
So, HCF of 117 and 65 = 13
HCF = {tex}65m + 117n{/tex}
For, {tex}m= 2{/tex} and {tex}n = -1{/tex},
HCF = 65{tex}\times{/tex} 2 + 117{tex}\times{/tex} (-1)
= 130 - 117
= 13
Hence, the integral values of m and n are 2 and -1 respectively and the HCF of 117 and 65 is 13.

  • 1 answers

बेबि बीच 7 years, 3 months ago

As we know, sin^2 A + cos^2 A = 1 ................................................................. Which could be written as, (Sin A - cos A )^2 + 2 sinA cos A = 1 (SinA- cos A)^2 = 1 - 2sinA cosA SinA - cos A = root ( 1- 2sinA cosA)
  • 3 answers

Lakshay Bhargav 7 years, 3 months ago

Try to make formulas not kust mug them up more you deeive them more properties you will learn and it will be difficult at the end of year to handle huge amount of matter so to ease up derive them on your own you will never forget them

Ritu Sena 7 years, 3 months ago

Learn and remember all the formulas thoroughly and practice as many as questions as u can.....

Bilal Ali 5 years, 8 months ago

Geography chapter 2
  • 1 answers

Taiyab Hussain. 7 years, 3 months ago

The tree is making an angle of 90° with the ground. The height 7m and distance b/w its foot 24m. If we apply pythagoras theorem in this, then: h^2=7^2 + 24^2 =>h^2= 49 + 576 => h^2 = 625 => h = √625 => h = 25. If we add hypotenuse and height of the broken tree, we will get its original height : 25 + 7= 32m
  • 0 answers
  • 1 answers

Kirti Garg 7 years, 3 months ago

A21+A7 = a+20d+a+6d 84=2a+26d 42=a+13d D=42-a÷13

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App