No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

we have to find that non-zero value of k, for which the quadratic equation kx2 +1 - 2(k - l)x +x{tex}^2{/tex} = 0 has equal roots. 

Given, {tex}k x ^ { 2 } + 1 - 2 ( k - 1 ) x + x ^ { 2 } = 0{/tex}

{tex}( k + 1 ) x ^ { 2 } - 2 ( k - 1 ) x + 1 = 0{/tex}

For equal roots {tex}D = b ^ { 2 } - 4 a c = 0{/tex}

Here,  a= k + 1,b = -2 (k -1), c = 1

{tex}4 ( k - 1 ) ^ { 2 } - 4 ( k + 1 ) \times 1 = 0{/tex}

or, {tex}4 k ^ { 2 } - 8 k + 4 - 4 k - 4 = 0{/tex}

or, {tex}4 k ^ { 2 } - 12 k = 0{/tex}

or, {tex}4 k ( k - 3 ) = 0{/tex}

{tex}\therefore {/tex} k=3 [k=0 is rejected as it is coefficient of {tex}x^2{/tex}]

  • 1 answers

Rohan Kr. 7 years, 3 months ago

Abe pagal ye quadratic equations nahi hai yeh
  • 1 answers

Sia ? 6 years, 6 months ago

By the question we have,

                        (p + 1)x2- 6(p + 1)x + 3(p + 9) = 0. 
Here, a = p + 1, b = -6(p + 1) and c = 3(p + 9)
We know that, D = b2 - 4ac
                           = [-6(p + 1)]2 - 4(p + 1)[3(p + 9)]
                           = 36(p2 + 2p + 1) - (4p + 4)(3p + 27)
                           = 36p2 + 72p + 36 - (12p2 + 108p + 12p + 108)
                           = 36p2 + 72p + 36 - 12p2 - 120p - 108
                           = 24p2 - 48p - 72

As we know that when quadratic equation has real and equal roots, its discrimnant is equal to zero i.e., 
            D = b2 - 4ac = 0

  {tex}\Rightarrow{/tex}      24p2 - 48p - 72 = 0
{tex}\Rightarrow{/tex}       p2 - 2p - 3 = 0
{tex}\Rightarrow{/tex}      p2 - 3p + p - 3 = 0
{tex}\Rightarrow{/tex}      p(p - 3) + 1(p - 3) = 0
{tex}\Rightarrow{/tex}      (p - 3)(p + 1) = 0
{tex}\Rightarrow{/tex}      p - 3 = 0 or p + 1 = 0
{tex}\Rightarrow{/tex}      p = 3 or p = -1


After substituting the values of p in the given equation, the two equations will be of the form
         4x2 - 24x + 36 = 0 or 0x2 - 0x + 24= 0
Since, 0x2 - 0x+24= 0 is not a quadratic equation, therefore we neglect it here.
Now Consider the remaining one i.e.,  4x2 - 24x + 36 = 0
{tex}\Rightarrow{/tex}    x2 - 6x + 9 = 0
{tex}\Rightarrow{/tex}    x2 - 3x - 3x + 9 = 0
{tex}\Rightarrow{/tex}    x(x - 3) - 3(x -3) 0
{tex}\Rightarrow{/tex}     (x - 3)(x - 3) = 0
{tex}\Rightarrow{/tex}    (x - 3)2 = 0
{tex}\Rightarrow{/tex}     x - 3 = 0
{tex}\Rightarrow{/tex}     x = 3

Hence the values of x are 3,3.

  • 1 answers

Myra Hi 7 years, 3 months ago

Check in Ncert
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let vertices of {tex} \triangle ABC{/tex} be A(x1, y1), B(x2, y2) and C(x3, y3)
By mid-points formula
{tex}\frac{{{x_2} + {x_3}}}{2} = 3 \Rightarrow {x_2} + {x_3} = 6{/tex} ...... (i)
{tex}\frac{{{y_2} + {y_3}}}{2} = 1 \Rightarrow {y_2} + {y_3} = 2{/tex} ...... (ii)
{tex}\frac{{{x_3} + {x_1}}}{2} = 5 \Rightarrow {x_3} + {x_1} = 10{/tex} ..... (iii)
{tex}\frac{{{y_3} + {y_1}}}{2} = 6 \Rightarrow {y_1} + {y_3} = 12{/tex} ..... (iv)
{tex}\frac{{{x_1} + {x_2}}}{2} = - 3 \Rightarrow {x_1} + {x_2} = - 6{/tex} ..... (v)
{tex}\frac{{{y_1} + {y_2}}}{2} = 2 \Rightarrow {y_1} + {y_2} = 4{/tex} ...... (vi)
Adding (i), (iii) and (v)
 
2(x1 + x2 + x3) = 10
{tex} \Rightarrow {/tex} x1 + x2 + x3 = 5 ...... (vii)
Adding (ii),(iv)and (vi)
2(y1 + y2 + y3) = 18
y1 + y2 + y3 = 9 ....... (viii)
Subtracting (i), (iii) and (v) from (vii)
We get, x1 = -1, x2 = -5, x3 = 11
Subtracting (ii), (iv) and (vi) from eq. (viii)
We get, y1 = 7, y2 = -3, y3 = 5

  • 1 answers

Ishu Ishu 7 years, 3 months ago

If possible let (1/2 - √5/3) be a rational number x 1/2-√5/3 => x making denominator equal (3-2√5)/6 => x 3-2√5 = 6x 3-6x = 2√5 2(1-2x)/2 = √5 1-2x = √5 since , x is rational number (by our supposition) 2x is also rational 1 is rational and we know that , difference of 2 rationals is rational number so, this tells us that √5 is also rational but , √5 is irrational thus , our supposition is wrong so x is not rational , and x = 1/2 -√5/3 so, 1/2 - √5/3 is irrational hope this helps Read more on Brainly.in - https://brainly.in/question/1462562#readmore
  • 1 answers

Jignesh Sharma 7 years, 3 months ago

We know that tan =sin/cos divide sin by cos
  • 0 answers
  • 0 answers
  • 1 answers

Randeep Kaur 7 years, 3 months ago

a=3/2 and d= 1/1 - 3/2 =-1/2
  • 0 answers
1.2
  • 0 answers
  • 0 answers
  • 1 answers

Anjali Pokhariya 7 years, 3 months ago

Let root5 is a rational number where root5=a/b and b is not = 0 Then root5 =a/b Squaring both side 5=a×a/b×b 5bsquare=a square a is divisible by 5 5 is a factor of a Let 5c=a Then 5bsquare =(5c)square 5bsquare =25csquare bsquare = 5csquare Then bsquare is a factor of 5 b is also a factor of 5 Hence,a and b are co prime numbers Therefore,our contradict the fact that root5 is an irrational number Hence,our supposition is wrong Therefore, root5 is an irrational number Hence Proved
  • 1 answers

Vedant Raizada 5 years, 10 months ago

a+15d=15(a+2d) a+15d=15a+30d -14a-15d=0 14a+15d=0 a+9d=41 14a+126d=574 14a+15d=0 111d=574 d=574/111
  • 1 answers

Azhad Jamal 7 years, 3 months ago

First of its altitude divides into two equal half aftet we use pythagoras theorem its answer is route 48
  • 1 answers

Isha Pareek 7 years, 3 months ago

For example u have underoot: 2=p than putting( squaring both sides) and u have 2= p 2
  • 1 answers

Himanshu Tyagi 7 years, 3 months ago

Vbsmzm
  • 1 answers

Sia ? 6 years, 6 months ago

tan A = {tex}=\frac{1}{\cot A}{/tex}
{tex}\Rightarrow{/tex} tan2 A = {tex}\frac{1}{\cot ^{2} A}{/tex}
{tex}\Rightarrow{/tex} sec2 A - 1 = {tex}\frac{1}{\cot ^{2} A}{/tex}
{tex}\Rightarrow{/tex} sec2 A = {tex}\frac{1}{\cot ^{2} A}{/tex}+ 1
{tex}\Rightarrow{/tex} secA = {tex}\frac{1+\cot ^{2} A}{\cot ^{2} A}{/tex}
{tex}\Rightarrow{/tex} sec A = {tex}\sqrt{\frac{1+\cot ^{2} A}{\cot ^{2} A}}{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{1}{\cos A}=\sqrt{\frac{1+\cot ^{2} A}{\cot ^{2} A}}{/tex}
{tex}\Rightarrow{/tex} cos A = {tex}\sqrt{\frac{\cot ^{2} A}{1+\cot ^{2} A}}{/tex} {tex}=\frac{\cot A}{\sqrt{1+\cot ^{2} A}}{/tex}
{tex}\therefore{/tex} cos A = {tex}\frac{\cot A}{\sqrt{1+\cot ^{2} A}}{/tex}

  • 0 answers
  • 1 answers

Gurlin Jassi 7 years, 3 months ago

d=-4 a+16d=4 Put d =-4 a+16*-4=4 a+64=4 a=4-64 a=-60

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App