No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Wasim Khan 7 years, 3 months ago

Practice all questions from ncert book
  • 2 answers

Harsh Naik 7 years, 3 months ago

Best of luck bhai ?

Mohit Kashyap 7 years, 3 months ago

Best of luck
  • 3 answers

Abhishek Patwa 7 years, 3 months ago

X x Y =1068 248 x Y = 1068 Y=4.30645161

Manpreet Kaur Manpreet 7 years, 3 months ago

1068/248=

Rohan Kr. 7 years, 3 months ago

4.3064
  • 2 answers

Dheeraj Verma 7 years, 3 months ago

Thanks bhai

Rohan Kr. 7 years, 3 months ago

Suppose you are taking a book from a library and the library charges a fix charge for three days after that an extra charge for each day. If u have to find the total charge taken by u when u return the book on 27th day, what will u do?? Here comes the use AP to easily find it?? (Rem formulae from book)
  • 2 answers

Rounak Singh 7 years, 3 months ago

wasa nahi bata sakta ho

Somya Choudhary 7 years, 3 months ago

see in book....
  • 2 answers

Shourya Veer 7 years, 3 months ago

Present Age of Manish is 14 and present age of son will become 8

Nikhil Chaudhary 7 years, 3 months ago

Let the father's age be X years and that son's b y years. Then, x+2y=70 ........(1) 2x+y=95 ........(2) Multiple (1) by 2, we get 2x+4y=140 ........(3) Subtracting(2) from(3), we get 3y=45 or y=15 putting the value of Y in equation (1) x+30=70 x=40 Hence father's age is 40 years and the son's age is 15 years
  • 0 answers
  • 1 answers

Yogita Ingle 7 years, 3 months ago

Total number is 98
Divisible by 8 are 8,16,24,32,40,48,56,64,72,80,88,96
So 12 numbers are divisible
So probability of divisible numbers = 12/98 = 6/49

  • 1 answers

Sia ? 6 years, 6 months ago

Given : {tex}\Delta A B C \sim \Delta P Q R{/tex}
To Prove : {tex}\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = \left( \frac { A B } { P Q } \right) ^ { 2 }= \left( \frac { BC } { QR } \right) ^ { 2 }= \left( \frac { A C } { P R } \right) ^ { 2 }{/tex}
Construction: Draw AD {tex} \bot {/tex}BC and PE {tex} \bot {/tex} QR
Proof :

{tex}\Delta A B C \sim \Delta P Q R{/tex} 
{tex}\therefore\frac { A B } { P Q } = \frac { B C } { Q R } = \frac { A C } { P R }{/tex} ( Ratio of corresponding sides of similar triangles are equal) ...(i)
{tex}\angle B = \angle Q{/tex} (Corresponding angles of similar triangles)......... (ii)
In {tex}\Delta A D B \text { and } \Delta P E Q{/tex} 
{tex}\angle B = \angle Q{/tex} ( From (ii)) 
{tex}\angle A D B = \angle P E Q{/tex} {tex}\left[\; \operatorname { each } 90 ^ { \circ } \right]{/tex} 
{tex}\therefore {/tex} {tex}\Delta A D B \sim \Delta P E Q{/tex} [ By AA criteria] 
{tex}\Rightarrow{/tex} {tex}\frac { A D } { P E } = \frac { A B } { P Q }{/tex}  (Corresponding sides of similar triangles) ...(iii)
From equation (i) and equation (iii)
{tex}\frac { A B } { P Q } = \frac { B C } { Q R } = \frac { A C } { P R } = \frac { A D } { P E }{/tex} ...(iv)
{tex}\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = \frac { \frac { 1 } { 2 } \times B C \times A D } { \frac { 1 } { 2 } \times Q R \times P E }{/tex} 
{tex}= \left( \frac { B C } { Q R } \right) \times \left( \frac { A D } { P E } \right){/tex} 
({tex}\frac{AD}{PE}=\frac{BC}{QR}{/tex}
{tex}= \frac { B C } { Q R } \times \frac { B C } { Q R }{/tex} 
{tex}\Rightarrow{/tex} {tex}\frac { a r ( \Delta A B C ) } { a r ( \Delta P Q R ) } = \frac { B C ^ { 2 } } { Q R ^ { 2 } }{/tex} ....(v) [from eq. (iv)]
From equation (iv) and equation (v),
{tex}\therefore\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = \left( \frac { A B } { P Q } \right) ^ { 2 }= \left( \frac { BC } { QR } \right) ^ { 2 }= \left( \frac { A C } { P R } \right) ^ { 2 }{/tex}
{tex}\therefore{/tex} Ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

2(3x - y) = 5xy .(i)

2(x + 3y) = 5xy ..(ii)

Divide eqns. (i) and (ii) by xy,

{tex}\frac { 6 } { y } - \frac { 2 } { x } = 5{/tex}  ....(iii)

and {tex}\frac { 2 } { y } + \frac { 6 } { x } = 5{/tex} .....(iv)

Let {tex}\frac { 1 } { y } = a \text { and } \frac { 1 } { x } = b{/tex}

then equations (iii) and (iv) become

6a - 2 b = 5 ......(v)

2a -6b = 5 ...(vi)

Multiplying eqn. (v) by 3 and then adding with eqn. (vi),

18a - 6b + 2a - 6b = 15 + 5

20a = 20

{tex}\therefore {/tex} a=1

Substituting this value of a in eqn. (v),

{tex}b = \frac { 1 } { 2 }{/tex}

Now {tex}\frac { 1 } { y } = a = 1{/tex}

or, y=1

and {tex}\frac { 1 } { x } = b = \frac { 1 } { 2 }{/tex}

or, x=2

Hence, x = 2, y = 1

  • 1 answers

Sia ? 6 years, 6 months ago

Let the time in which man can finish the work in x days and the boy can finish the same work in y days.

Total work done = work done in one day {tex}\times{/tex} number of days

Work done by one man in one day = {tex}\frac { 1 } { x }{/tex}

and work done by one boy in one day ={tex}\frac { 1 } { y }{/tex}

{tex}\frac { 2 } { x } + \frac { 7 } { y } = \frac { 1 } { 4 }{/tex} ....(i)

{tex}\frac { 4 } { x } + \frac { 4 } { y } = \frac { 1 } { 3 }{/tex} ....(ii)

Let {tex}\frac { 1 } { x }{/tex} be a and {tex}\frac { 1 } { y }{/tex} be b , then 

{tex}2 a + 7 b = \frac { 1 } { 4 }{/tex} ....(iii)

{tex}4 a + 4 b = \frac { 1 } { 3 }{/tex} ....(iv)

On Multiplying eqn. (iii) by 2 and subtract eqn. (iv)
from it

we get, {tex}b = \frac { 1 } { 60 }{/tex}

Put {tex}b = \frac { 1 } { 60 }{/tex} in equation (iii),

{tex}2 a + \frac { 7 } { 60 } = \frac { 1 } { 4 }{/tex}

{tex}\Rightarrow \quad 2 a = \frac { 1 } { 4 } - \frac { 7 } { 60 }{/tex}

{tex}\Rightarrow \quad a = \frac { 1 } { 15 }{/tex}

So, {tex}\frac { 1 } { 15 } = \frac { 1 } { x }{/tex}

{tex}\therefore {/tex}{tex}x=15{/tex} 

Also, {tex}b = \frac { 1 } { 60 }=\frac { 1} { y }{/tex}

Hence, y = 60

Therefore , the man can finish the work alone in 15 days and the boy in 60 days.

  • 0 answers
  • 1 answers

Ande Abhishikth 7 years, 3 months ago

Kab hai
  • 3 answers

Ande Abhishikth 7 years, 3 months ago

What's the portion, my exams are over i will help you.

Shivani Sudeshi 7 years, 3 months ago

What is your portion I'll give u a hint

Swati Khatri 7 years, 3 months ago

Everything is important.
  • 1 answers

Shivam Soni 7 years, 3 months ago

Given that sum and product are8and12 Therefore required polynomial is X^2-8x+12 Now factorise it you will get x=2,x=6
  • 2 answers

Ammu Ammu 7 years, 3 months ago

Yez

#Aditi~ Angel???? 7 years, 3 months ago

Yes
  • 1 answers

Sia ? 6 years, 6 months ago

The point on the y-axis is (-4,3)
{tex}\therefore {/tex}Distance between (-4,3) and (0,3)
d = {tex}\sqrt { ( 0 + 4 ) ^ { 2 } + ( 3 - 3 ) ^ { 2 } }{/tex}
{tex}\sqrt { 16 + 0 }{/tex}
= 4 units

  • 1 answers

Kannu Kranti Yadav 7 years, 3 months ago

By using the distance formula
  • 0 answers
  • 3 answers

Himanshi Dingu 7 years, 3 months ago

Sin theta -1by cosec theta..

Aman Bhatt 7 years, 3 months ago

No nahi likh sakte

Mehul Khatri 7 years, 3 months ago

No
  • 1 answers

Sia ? 6 years, 6 months ago

 The distances of P (x, y) from A (5,1) and B (-1,5) are equal, then we have to prove that 3x = 2y.

PA = PB
{tex}\therefore{/tex} PA2 = PB2
By distance formula,
(5 - x)2 + (1 - y)2= (-1 - x)2 + (5 - y)2
{tex}\Rightarrow{/tex}25 - 10x + x2 + 1 - 2y + y2 = 1 + 2x + x2 + 25 - 10y + y2
{tex}\Rightarrow{/tex} -10x - 2y = 2x - 10y
{tex}\Rightarrow{/tex} 8y = 12x
{tex}\Rightarrow{/tex}4(2y)= 4(3x)
{tex}\Rightarrow{/tex}3x = 2y
Hence Proved.

  • 2 answers

Tanishka Rathore 7 years, 3 months ago

-992 by BODMAS

Ayushi Priya 7 years, 3 months ago

-992
  • 2 answers

Anurag Rajpoot 7 years, 3 months ago

let ,alpha and bita are zeroes so,alpha+bita= 2 and alpha•bita=-12 f(x)= xsquare-(alpha+bita)x+alpha•bita =x² -2x+(-12) =x²-2x-12 required polynomial= x²-2x-12

Abhishek Patwa 7 years, 3 months ago

Kya Aaisha tumhe itna bhi nahi aata. Ans. Braket me X ka square phir _ braket me sum of zeroes braket close phir × X phir + product of zeroes braket close

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App