No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago


Given: A square ABCD and equilateral triangle BCE and ACF have been described on the side BC and diagonal AC respectively.
To Prove {tex}\operatorname { ar } ( \Delta B C E ) = \frac { 1 } { 2 } \operatorname { ar } ( \Delta A C F ){/tex}.
Proof: Since each of the {tex}\triangle BCE{/tex} and {tex}\triangle ACF{/tex} is an equilateral triangle, so each angle of each one of them is 60°.
So, the triangles are equiangular and hence similar.
{tex}\therefore \quad \triangle B C E \sim \triangle A C F{/tex}
We know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
{tex}\therefore \quad \frac { \operatorname { ar } ( \triangle B C E ) } { \operatorname { ar } ( \triangle A C F ) } = \frac { B C ^ { 2 } } { A C ^ { 2 } } = \frac { B C ^ { 2 } } { 2 ( B C ) ^ { 2 } }{/tex} {tex}[ \because A C = \sqrt { 2 } B C ]{/tex}
{tex}= \frac { 1 } { 2 }{/tex}
Hence, {tex}\operatorname { ar } ( \triangle B C E ) = \frac { 1 } { 2 } \times \operatorname { ar } ( \triangle A C F ){/tex} .

  • 1 answers

Hritik Bhadani 7 years, 3 months ago

Sin(A-B)=1/2 Sin30`=1/2 So,A-B=30=eq1 Cos(A+B)=1/2 Cos60`=1/2 So,A+B= 60=eq2 Add eq 1 and 2,we get A-B=30 + A+B=60 We get,A=45` and B=15`
  • 1 answers

Rakesh Kumar Tiwari 7 years, 3 months ago

sin(A+B)=1 , =› A+B= 90°...........(i) and sin(A-B)=1/2 , =› A-B=30°.............(ii) solving (i) and (ii) we get A=60, B=30
  • 1 answers

Sia ? 6 years, 6 months ago

In {tex}\Delta{/tex}BMC and {tex}\Delta{/tex} EMD, we have
MC = MD [{tex}\because{/tex} M is the mid-point of CD]
{tex}\angle \mathrm { CMB } = \angle E M D{/tex} [Vertically opposite angles]
and, {tex}\angle M B C = \angle M E D{/tex} [Alternate angles]
So, by AAS-criterion of congruence, we have
{tex}\therefore \quad \Delta B M C \cong \Delta E M D{/tex}
{tex}\Rightarrow{/tex} BC = DE .......(i)
Also, AD = BC [{tex}\because{/tex} ABCD is a parallelogram] ...... (ii)

Adding (i) and (ii),we get,
AD + DE = BC + BC
{tex}\Rightarrow{/tex} AE = 2 BC ...(iii)
Now, in {tex}\Delta{/tex}AEL and {tex}\Delta{/tex}CBL, we have
{tex}\angle A L E = \angle C L B{/tex} [Vertically opposite angles]
{tex}\angle E A L = \angle B C L{/tex} [Alternate angles]
So, by AA-criterion of similarity of triangles, we have

{tex}\Delta A E L \sim \Delta C B L{/tex}
{tex}\Rightarrow \quad \frac { E L } { B L } = \frac { A E } { C B }{/tex}
{tex}\Rightarrow \quad \frac { E L } { B L } = \frac { 2 B C } { B C }{/tex} [Using equations (iii)]
{tex}\Rightarrow \quad \frac { E L } { B L } = 2{/tex}
{tex}\Rightarrow{/tex} EL = 2 BL

  • 3 answers

Swati Khatri 7 years, 3 months ago

a10 = 41, a18 =73 and a26 =? a10= a + 9d = 41-------(1) a18= a + 17d=73-------(2) (-). (+). (-) ----------------------- -8d = -32 d=4 Put d=4 in eqn.(1) a+9d=41 a+9(4)=41 a+36=41 a=5 Therefore, a26= a+25d = 5+25(4) = 5+100 a26= 105

Niyati Gupta 7 years, 3 months ago

a26=105

Latha Latha 7 years, 3 months ago

10th term of AP is 41 = a+9d=41---(1) 18th term of AP is 73 =a+17d=73----(2) Solve (1)&(2);a+9d=41 a+17d=73 ------------------ -8d=-32 d=4,substitute d= 4in (1) a+9(4)=41 a=5 So a26=a+25d =5+100=105
  • 1 answers

Anurag Maurya 7 years, 3 months ago

O Bhai copy le ke aa??
  • 3 answers

Gur Maan 7 years, 3 months ago

2/a-b = 3/a+b 2(a+b)=3(a-b) 2a+2b=3a-3b 2a+2b-3a+3b 2a+3a=3b-2b a=5 b=1

Abhishek Sharma 7 years, 3 months ago

a=5 , b=1

Anurag Maurya 7 years, 3 months ago

Copy le aa me solve kar donga
  • 2 answers

Anshul Telange 7 years, 3 months ago

Tan (3x + 30°) = 1 The value of tan is 1 when theta is 45 which means Tan45° = 1 Therefore Tan (3x + 30°) = Tan45° 3x + 30 = 45 3x = 45-30 3x = 15 x = 15/3 x = 5

Abhishek Sharma 7 years, 3 months ago

X=5
  • 1 answers

Sia ? 6 years, 6 months ago

Let AB be the mountain of height h kilometres. Let C be a point at a distance of x km. from the base of the mountain such that the angle of elevation of the top at C is 30o. Let D be a point at a distance of 10 km from C such that the angle of elevation at D is of 15o.

In {tex}\triangle C A B,{/tex} we have
{tex}\tan 30 ^ { \circ } = \frac { A B } { A C }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { \sqrt { 3 } } = \frac { h } { x }{/tex}
{tex}\Rightarrow \quad x = \sqrt { 3 } h{/tex}  ...(i)
In {tex}\triangle D A B,{/tex} we have
{tex}\tan 15 ^ { \circ } = \frac { A B } { A D }{/tex}
{tex}\Rightarrow \quad 0.27 = \frac { h } { x + 10 }{/tex}
{tex}\Rightarrow{/tex} (0.27) (x +1) = h  ...(ii)
Substituting x = {tex}\sqrt { 3 }{/tex}h obtained from equation (i) in equation (ii), we get
{tex}0.27 ( \sqrt { 3 } h + 10 ) = h{/tex}
{tex}\Rightarrow \quad 0.27 \times 10 = h - 0.27 \times \sqrt { 3 } h{/tex}
{tex}\Rightarrow \quad h ( 1 - 0.27 \times \sqrt { 3 } ) = 2.7{/tex}
{tex}\Rightarrow{/tex} h (1 - 0.46) = 2.7
{tex}\Rightarrow \quad h = \frac { 2.7 } { 0.54 } = 5{/tex}
Hence, the height of the mountain is 5 km.

  • 2 answers

Abhishek Sharma 7 years, 3 months ago

See example of chapter 1

Jaya Chauhan 7 years, 3 months ago

Irrational
  • 1 answers

Yash Vardhan Singh Chauhan 7 years, 3 months ago

X1 + x2 + x3 /3 = X & y1 + y2 + y3/3= Y of centroid
  • 5 answers

Rohan Sachdev 7 years, 3 months ago

Only asked in PT

Rohan Sachdev 7 years, 3 months ago

Not at all

Vaibhav Parmar 7 years, 3 months ago

sometime

Sahil Singh 7 years, 3 months ago

Yes

Mohsin Khan 7 years, 3 months ago

Yes
  • 1 answers

Sahil Singh 7 years, 3 months ago

1
  • 1 answers

Sia ? 6 years, 6 months ago

0.00611764705

  • 1 answers

Sia ? 6 years, 6 months ago

Given,
{tex}\frac { 1 } { ( a + b + x ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { x }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + x ) } - \frac { 1 } { x } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { x - ( a + b + x ) } { x ( a + b + x ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { x ( a + b + x ) } = \frac { ( a + b ) } { a b }{/tex}

On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { x ( a + b + x ) } = \frac { 1 } { a b }{/tex}

Now cross multiply
{tex}\Rightarrow{/tex} x(a + b + x) = -ab 
{tex}\Rightarrow{/tex} x2 + ax + bx + ab = 0

{tex}\Rightarrow{/tex} x(x +a) + b(x +a) = 0
{tex}\Rightarrow{/tex} (x + a) (x + b) = 0

{tex}\Rightarrow{/tex} x + a = 0 or x + b = 0
{tex}\Rightarrow{/tex} x = -a or x = -b.
Therefore, -a and -b are the roots of the  equation.

  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Yogita Ingle 7 years, 3 months ago

In a right-angled triangle, “The sum of squares of the lengths of the two sides is equal to the square of the length of the hypotenuse (or the longest side).”

  • 0 answers
  • 1 answers

Gaurav Kumar 7 years, 3 months ago

√2 = 1.414 √3= 1.732 So, a rational number between those two would be 1.5 (3/2). But there are several more, in fact, infinite number of rational numbers between √2 and √3.
  • 1 answers

Polo .... 7 years, 3 months ago

Pi is actually the ratio of the circumference of the circle to its diameter. On actual measurement, it has been found to be 3.14592635...,i.e., irrational. For the ease of calculation, it is considered 22/7 which is a rational number.
  • 1 answers

Sia ? 6 years, 6 months ago

Given polynomial is p(x) = 2x- x2- 5x - 2
 and  -1 and 2 are zeroes of polynomial.
{tex}\therefore{/tex} {x - (-1)} (x - 2)= ( x + 1) (x - 2) = x2 - 2x + x - 2  = x2- x - 2 is a factor of p(x)

For other zeroes, 2x + 1 = 0
{tex}\Rightarrow x = \frac { - 1 } { 2 }{/tex}
{tex}\therefore{/tex} Other zero = {tex}\frac { - 1 } { 2 }{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App