No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Sharlin Thomas 7 years, 2 months ago

What the hell???
  • 2 answers

Sharlin Thomas 7 years, 2 months ago

First shift the terms of RHS to LHS then sign will change , then use the formula

Sharlin Thomas 7 years, 2 months ago

Its very easy see pg 60 of your ncert
  • 1 answers

Sia ? 6 years, 4 months ago

Let A → (6, –6), B → (3, –7) and C → (3, 3).
Let the centre of the circle be I(x, y)
Then, IA = IB = IC [By definition of a circle]
{tex}\Rightarrow{/tex} IA2 = IB2 = IC2
{tex}\Rightarrow{/tex} (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2
Taking first two, we get
(x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2
{tex}\Rightarrow{/tex} x2 - 12x + 36 + y2 + 12y + 36  = x2 - 6x + 9 + y2 + 14y + 49
{tex}\Rightarrow{/tex} 6x + 2y = 14
{tex}\Rightarrow{/tex} 3x + y = 7 ......(1) ....[Dividing throughout by 2]
Taking last two, we get
(x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2
{tex}\Rightarrow{/tex} (y + 7)2 = (y - 3)2
{tex}\Rightarrow{/tex} (y + 7) = {tex}\pm{/tex}(y-3)
taking +e sign, we get
y + 7 = y - 3
{tex}\Rightarrow{/tex} 7 = -3
which is impossible
Taking -ve sign, we get
y + 7 = -(y - 3)
{tex}\Rightarrow{/tex} y + 7 = -y + 3
{tex}\Rightarrow{/tex} 2y = -4
{tex}\Rightarrow y = \frac{{ - 4}}{2} = - 2{/tex}
Putting y = -2 in equation (1), we get
{tex}\Rightarrow{/tex} 3x - 2 = 7
{tex}\Rightarrow{/tex} 3x = 9
{tex}\Rightarrow{/tex} x = 3
Thus, I {tex}\rightarrow{/tex} (3, -2)
Hence, the centre of the circle is (3, -2).

  • 1 answers

Ananya Sharma 7 years, 2 months ago

What we have to find
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}{/tex}We know that if three points A, B, C are collinear, then area of {tex}\Delta ABC =0{/tex}
Given that points A(k + 1, 1), B(2k + 1, 3) and C(2k + 2, 2k) are collinear.
Here, x1= k+1 , x2 =2k+1, x3= 2k+2, y1= 1, y2= 3, y3= 2k

{tex}\Rightarrow {/tex} Area of {tex}\Delta ABC =0{/tex}

{tex}\Rightarrow {/tex} {tex}\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|=0{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{1}{2}|(k+1)(3-2k)+(2k+1)(2k-1)+(2k+2)(1-3)|=0{/tex}
{tex}\Rightarrow{/tex} {tex}|k(3-2k)+1(3-2k)+(2k)^2-(1)^2+(2k+2)(-2)|=0{/tex}

{tex}\Rightarrow{/tex} |3k - 2k2 + 3 - 2k + 4k2 - 1 - 4k - 4 |= 0
{tex}\Rightarrow{/tex} |2k2 - 3k - 2 |= 0
{tex}\Rightarrow{/tex} 2k2 - 4k + k - 2 = 0
{tex}\Rightarrow{/tex} 2k(k - 2) + 1(k - 2) = 0
{tex}\Rightarrow{/tex} (2k + 1) (k - 2) = 0
{tex}\Rightarrow{/tex} k = - {tex}\frac { 1 } { 2 }{/tex}, k = 2

  • 2 answers

Kannu Kranti Yadav 7 years, 2 months ago

Let √3 be a rational number then it can be written in the form of a/ b, b≠0 and a and b are co prime numbers . √3=a/b , now squaring on both sides gives 3=a²/b²........... 3b²=a² it means a² is divisible by 3 , so a is also divisible by 3 ....... Let a=3c now squaring on both sides gives a²=9c² . putting value of a².... 3b²=9c² , it gives us b²=3c² .. it means b² is divisible by 3 so b is also divisible by 3 ..... Therefore our assumption is wrong . They have a common factor as 3 . So √3 is an irrational number . Hence proved

Deepanshi Mittal 7 years, 2 months ago

NCERT question..... Maths can't type here
  • 0 answers
  • 1 answers

Nikki Kushwah 7 years, 2 months ago

A=45 B=15
  • 1 answers

Aryan Yadav 7 years, 2 months ago

49=7/2[2a+6d] 14=2a+6d 7=a+3d_________1 34=2a+16d 17=a+8d__________2 a+3d=7 a+8d=17 ______________on sub -5d=-10 d=2 a=1 Sn=n/2{2+(n-1)2} Sn=n×n
  • 3 answers

Srishti Sharma 7 years, 2 months ago

In a triangle ABC if DE II BC then AD/DB = AE/EC

Harsh Naik 7 years, 2 months ago

given - DE parallel BC to prove - AD÷DB=AE÷EC

Harsh Naik 7 years, 2 months ago

it's very easiy...
  • 2 answers

Manvi Munpariya 7 years, 2 months ago

Or of we put value of n in this equation any than we find the vvalue of S1,S2 etc

Manvi Munpariya 7 years, 2 months ago

Ky afind karna h
  • 1 answers

Kirti Kaushik 7 years, 2 months ago

It is given in book
  • 1 answers

Sia ? 6 years, 4 months ago

Let us assume that point P divides the line segment AB in the ratio (k : 1)
Using section formula,
P(4, m) = {tex}\frac{6k+2}{k+1} , {/tex}{tex}\frac{-3k+3}{k+1}{/tex}
{tex}\therefore{/tex} {tex}\frac{6 \mathrm{k}+2}{\mathrm{k}+1}{/tex} = 4 {tex}\Rightarrow 6k+2=4k+4 \Rightarrow 2k=2{/tex}
{tex}\Rightarrow{/tex} k = 1
{tex}\therefore{/tex} The ratio is 1 : 1
Now, m = {tex}\frac{-3k+3}{k+1}{/tex} = {tex}\frac{-3+3}{2}{/tex} = 0

  • 2 answers

Sia ? 6 years, 4 months ago

Given, {tex}\frac { \cos \theta } { 1 - \sin \theta } + \frac { \cos \theta } { 1 + \sin \theta } = 4{/tex}

Taking LCM
 {tex}\frac { \cos \theta ( 1 + \sin \theta ) + \cos \theta ( 1 - \sin \theta ) } { ( 1 - \sin \theta ) ( 1 + \sin \theta ) } = 4{/tex}
 {tex}\frac { \cos \theta [ 1 + \sin \theta + 1 - \sin \theta ] } { 1 - \sin ^ { 2 } \theta } = 4{/tex}
 {tex}\frac { \cos \theta ( 2 ) } { \cos ^ { 2 } \theta } = 4{/tex}
 {tex}\frac { 2 } { \cos \theta } = 4{/tex}
 {tex}\cos \theta = \frac { 2 } { 4 } = \frac { 1 } { 2 }{/tex}
 {tex}\cos \theta = \cos 60 ^ { \circ }{/tex}
{tex}\therefore \theta = 60 ^ { \circ }{/tex}

Sia ? 6 years, 4 months ago

Given, {tex}\frac { \cos \theta } { 1 - \sin \theta } + \frac { \cos \theta } { 1 + \sin \theta } = 4{/tex}

Taking LCM
 {tex}\frac { \cos \theta ( 1 + \sin \theta ) + \cos \theta ( 1 - \sin \theta ) } { ( 1 - \sin \theta ) ( 1 + \sin \theta ) } = 4{/tex}
 {tex}\frac { \cos \theta [ 1 + \sin \theta + 1 - \sin \theta ] } { 1 - \sin ^ { 2 } \theta } = 4{/tex}
 {tex}\frac { \cos \theta ( 2 ) } { \cos ^ { 2 } \theta } = 4{/tex}
 {tex}\frac { 2 } { \cos \theta } = 4{/tex}
 {tex}\cos \theta = \frac { 2 } { 4 } = \frac { 1 } { 2 }{/tex}
 {tex}\cos \theta = \cos 60 ^ { \circ }{/tex}
{tex}\therefore \theta = 60 ^ { \circ }{/tex}

  • 0 answers
  • 3 answers

Sakshi Mishra 7 years, 2 months ago

Do it thoroughly. It may help u to score atlest 90%

Gunjan Malhotra 5 years, 8 months ago

Hello

Nisha Pawar 7 years, 2 months ago

No
  • 2 answers

Sagar Jogi 7 years, 2 months ago

(3x+1)x +3y-2 3x²+x+3y-2

Abinash Sahoo 7 years, 2 months ago

3xsqare+x+3y-2
  • 1 answers

Yash Kumar 7 years, 2 months ago

An=a+(n-1)d So, 16=a+2d(equ1). , A7 =a+6d, A5= a+4d Now, according to statement we have, a+6d=a+4d+12 solving this equation we get. d=6 putting this value in( equ 1) we get a=4. Now we have a.=4 ,d= 6 so AP will be 4,10, 16 ,22 ,28.............
  • 2 answers

Shaheen Hussain 7 years, 2 months ago

Haaaa

Sagar Jogi 7 years, 2 months ago

All are important
  • 1 answers

Sia ? 6 years, 6 months ago

Given,
{tex}\frac { 1 } { ( a + b + x ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { x }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + x ) } - \frac { 1 } { x } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { x - ( a + b + x ) } { x ( a + b + x ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { x ( a + b + x ) } = \frac { ( a + b ) } { a b }{/tex}

On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { x ( a + b + x ) } = \frac { 1 } { a b }{/tex}

Now cross multiply
{tex}\Rightarrow{/tex} x(a + b + x) = -ab 
{tex}\Rightarrow{/tex} x2 + ax + bx + ab = 0

{tex}\Rightarrow{/tex} x(x +a) + b(x +a) = 0
{tex}\Rightarrow{/tex} (x + a) (x + b) = 0

{tex}\Rightarrow{/tex} x + a = 0 or x + b = 0
{tex}\Rightarrow{/tex} x = -a or x = -b.
Therefore, -a and -b are the roots of the  equation.

  • 1 answers

Sia ? 6 years, 6 months ago

L.H.S 

= (1 + cotA + tanA) (sinA - cosA)

= sinA - cosA + cotA sinA - cotA cosA + sinA tanA - tanA cosA
{tex}= \sin A - \cos A + \frac{{\cos A}}{{\sin A}} \times \sin A - \cot A\cos A + \sin A\;\tan A - \frac{{\sin A}}{{\cos A}} \times \cos A{/tex}
= sinA - cosA + cosA - cotA cosA + sinA tanA - sinA
=  sinA tanA - cotA cosA........(1)


Now taking ;
{tex}\quad \frac{{\sec A}}{{\cos e{c^2}A}} - \frac{{\cos ecA}}{{{{\sec }^2}A}}{/tex}
{tex} = \frac{{\frac{1}{{\cos A}}}}{{\frac{1}{{{{\sin }^2}A}}}} - \frac{{\frac{1}{{\sin A}}}}{{\frac{1}{{{{\cos }^2}A}}}}{/tex}
{tex} = \frac{{{{\sin }^2}A}}{{\cos A}} - \frac{{{{\cos }^2}A}}{{\sin A}}{/tex}
{tex} = \sin A \times \frac{{\sin A}}{{\cos A}} - \cos A \times \frac{{\cos A}}{{\sin A}}{/tex}
{tex} = \sin A \times \tan A - \cos A \times \cot A{/tex}.......(2)

From (1) & (2),

(1 + cotA + tanA) (sinA - cosA) = {tex}\frac { \sec A } { cosec ^ { 2 } A } - \frac { cosec A } { \sec ^ { 2 } A }{/tex} = sinA.tanA - cosA.cotA 

Hence, Proved.

  • 2 answers

Mp Bvc 7 years, 2 months ago

The -2 is the zero of p(x).then x=-2 put the value of x you got answer.

Saif Khan 7 years, 2 months ago

x²+3x+K=0 (-2)²+3*(-2)+K=0 4+(-6)+K=0 -2+K=0 K=2
  • 1 answers

Nisha Pawar 7 years, 2 months ago

Common diference formula is a2 - a1 = a3 - a2 For any term or any thing formula is an = a + (n-1) d And for sum of the AP formula is Sn = n/2 (2a + (n-1) d ) To find last term formula is Sn = n/2 (a + l )

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App