No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Yogita Ingle 7 years, 2 months ago

x2 - 3x + 2 = 0
x2 - 2x - 1x + 2= 0
x(x - 2) - 1( x - 2) = 0
(x -1)  ( x -2) = 0
x - 1 = 0  or x - 2 = 0
x = 1 or x = 2

  • 0 answers
  • 2 answers

Yogita Ingle 7 years, 2 months ago

=150 - 800
= - 650

Arya Singh 7 years, 2 months ago

-650
  • 2 answers

Diksha Y 7 years, 2 months ago

x+1/x=7 ( taking cube on both sides) then (x+1/x )cube=7cube ,xcube+1/xcube+3 (x+1/x)=343 then we get xcube +1/x cube= 343-21so we get xcube +1/xcube=322

Tanishk Yadav 7 years, 2 months ago

217/36
  • 4 answers

Kritika Mishra 7 years, 2 months ago

Infinite but if you are asking the ques of ncert then ans will be a= 105. an=994 d=7

Amit Gupta 7 years, 2 months ago

105 to 904

Amul Kumar 7 years, 2 months ago

Infinite

Sagar Jogi 7 years, 2 months ago

Infinite
  • 2 answers

Anshika Mittal 7 years, 2 months ago

What type of question us this .And from which chapter does it belong

Amul Kumar 7 years, 2 months ago

What
  • 1 answers

Sia ? 6 years, 6 months ago

Given, {tex}\theta{/tex} = 30° and r = 4 cm
Area of sector OAPB ={tex}\frac { \theta } { 360 } \times \pi r ^ { 2 }{/tex}
Let 'A' be the area of corresponding major sector.
Then, A = Area of sector OAQB
{tex}\Rightarrow{/tex}A = Area of the circle - Area of the corresponding minor sector
{tex}\Rightarrow A = \pi r ^ { 2 } - \frac { \theta } { 360 } \times \pi r ^ { 2 }{/tex}
{tex}\Rightarrow A = \pi r ^ { 2 } \left( 1 - \frac { \theta } { 360 } \right){/tex}
{tex}\Rightarrow A = 3.14 \times 4 \times 4 \left( 1 - \frac { 30 } { 360 } \right) \mathrm { cm } ^ { 2 }{/tex}
{tex}\Rightarrow A = 3.14 \times 4 \times 4 \times \frac { 11 } { 12 } \mathrm { cm } ^ { 2 }{/tex}{tex}= \frac { 3.14 \times 44 } { 3 } \mathrm { cm } ^ { 2 }{/tex}= 46.05 cm2

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Given: In ABC, {tex}\frac { \mathrm { AP } } { \mathrm { BP } } = \frac { \mathrm { AQ } } { \mathrm { QC } }{/tex}
To prove: PQ {tex}\|{/tex} BC
Construction: Let PE {tex}\|{/tex} BC(construction).

{tex}\therefore \quad \frac { \mathrm { AP } } { \mathrm { PB } } = \frac { \mathrm { AE } } { \mathrm { EC } }{/tex} ..(i)
Also, {tex}\frac { \mathrm { AP } } { \mathrm { BP } } = \frac { \mathrm { AQ } } { \mathrm { QC } }{/tex} [given (ii)]
From (i) and (ii) {tex}\frac { \mathrm { AE } } { \mathrm { EC } } = \frac { \mathrm { AQ } } { \mathrm { QC } } \Rightarrow{/tex} E and Q coincides
{tex}\therefore{/tex} PQ {tex}\|{/tex} BC.

  • 1 answers

Yogita Ingle 7 years, 2 months ago

3(median) = 2(mean) + mode
Let the mean be 'x'
So, median will be x + 3
Then, according to the question
3(x+3) = 2(x) + mode
3x + 9 = 2x + mode
3x - 2x + 9 - mode
x+9 = mode
Now, mode - mean
⇒ x+9 - x
= 9  
So, mode exceeds the mean by 9.  

 

  • 1 answers

Sia ? 6 years, 4 months ago

Value of tan A increases when A increases from {tex}0^o{/tex} to {tex}90^o{/tex}{tex}(0,\frac{1}{\sqrt{3}},1,\sqrt{3},{/tex} not defined at {tex}90^{\circ}{/tex})

  • 2 answers

Anshika Mittal 7 years, 2 months ago

Do it on copy then you understand what is the method

Anshika Mittal 7 years, 2 months ago

(In the question it is alltitude not median)Let all the sides of the equilateral triangle ABC be a .let altitudes be AD be b as AD is the alltitude on BC so let BD=a/2 and DC = a/2 . In triangle ABD.By phythagoras therome (as triangle ABD in right angle triangle ) AB2 = AD2 + BD2 ( HERE 2 IS POWER ) a2 = b2 + (a/2 )2 => a2= b2+a2/4 =>4a2=4b2+a2 =>3a2=4b2
  • 4 answers

Kannu Kranti Yadav 7 years, 2 months ago

@ is called at or at the rate.

Sunidhi Chauhan 7 years, 2 months ago

At the rate

Anshika Mittal 7 years, 2 months ago

At the rate

Saurabh Singh Harariya 7 years, 2 months ago

At the rate
  • 3 answers

Anshika Mittal 7 years, 2 months ago

It is not possible

Saurabh Singh Harariya 7 years, 2 months ago

How is it possible

Jasmeet Kaur 7 years, 2 months ago

no not class 10 i am from class 6
  • 4 answers

Sunidhi Chauhan 7 years, 2 months ago

Perpendicular /hypotenuse

Jeeshan Khan 7 years, 2 months ago

Sin theta=p/h

Saurabh Singh Harariya 7 years, 2 months ago

Length/ hypotenuse

Ankit Giri 7 years, 2 months ago

0
  • 5 answers

Pallavi Balotiya 7 years, 2 months ago

1.2.3. P.B.P. H.H.B. Pakistan bhuka pet hindustan hara bhara

Anshika Mittal 7 years, 2 months ago

Pandit bol pandit har har bhole

Ankit Giri 7 years, 2 months ago

P/H ; B/H; p/B papa bedi pilo; Ha ha beta

Devanshi Grover 7 years, 2 months ago

Practice the solved questions..... Do NCERT properly..... N examplar......

Abhishek Dwivedi 7 years, 2 months ago

Please fast
  • 3 answers

Saurabh Singh Harariya 7 years, 2 months ago

Isme square nahi h to ye factorization possible nahi h

Jeeshan Khan 7 years, 2 months ago

This question is wrong

Manasvi Kakuste 7 years, 2 months ago

Is the question correct ?
  • 3 answers

Anjali Rastogi 7 years, 2 months ago

In ordinary year p(e) will be 1/7 and in leap year 2/7

Ankit Giri 7 years, 2 months ago

53/365

Manasvi Kakuste 7 years, 2 months ago

1/7
  • 2 answers

Khushal Rathore 7 years, 2 months ago

Given : 1.6 m height of statue Angle of elevation statue 60 ,,. ,,. ,,. ,,. Of pedestal 45 Let the height of pedestal =x So,. In triangle first tan45=p/b =x/b Tan45=1 ; 1=x/b =b=x In large triangle H=1.6 +x B=x √3=tan45 √3=1.6+x/x √3x=1.6+x √3x-x=1.6 ( √3-1)x=1.6 X=1.6/√3-1 X= 0.8(√3+1)m

Saurabh Singh Harariya 7 years, 2 months ago

?
  • 1 answers

Hardik Panwar 7 years, 2 months ago

cotA -cosA)/(cotA + cosA) = (cosecA-1)/(cosecA+1) (cotA -cosA)/(cotA + cosA) ((cosA/sinA)-cosA)/((cosA/sinA)-cosA) cotA=cosA/sinA taking cosA common from numretor nd denominatr nd cancelling it we get ((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA therfore (cosecA-1)/(cosecA+1)
  • 1 answers

Hardik Panwar 7 years, 2 months ago

X=m1x2-m2x1÷m2-m1 similar for y put x to y

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App