No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Amit Gupta 7 years, 2 months ago

Xsq +kx +3=0 Putting the value of x=1 1+k×1+3=0 1+1+k+3=0 4+1+k=0 K=-5
  • 0 answers
  • 2 answers

Nidhi Kaushik 7 years, 2 months ago

Thank u ajay singh....

Ajay Singh 7 years, 2 months ago

Yes,it is in AP:, and it's 55 term is 169....
  • 3 answers

Rohit Kumar 7 years, 2 months ago

y-4=0 then y=4 to the question 2x-3y=4 then 4 value is putup on question 2x=4+3×4 2x=16 then x= 16/2=8 Ans

Chandraveer Narayan 7 years, 2 months ago

Oh soory its not 4 its 2 by mistake i wrote it 4 so x=8

Chandraveer Narayan 7 years, 2 months ago

Y-4=0 Y=4 Putting y=4in eqn.i 2x-3*4=4 2x-12=4 2x=4+12 X=16/4=4
  • 7 answers

Swati Khatri 7 years, 2 months ago

No, koi bhi marks add nahi honge only last term may jo board exams honge bs vo he hai humare pass es baar

Aisha Jain 7 years, 2 months ago

Aapk school mein three times exams honge ar jo do unme best honge vo hi count hoga exams mein ..............So agr half yearly vale achche nhi hue toh dont worry u have another chance

Shaheen Hussain 7 years, 2 months ago

Nhi ho ga

Nidhi Kaushik 7 years, 2 months ago

No

Amit Gupta 7 years, 2 months ago

Not at all.... Dont worry nhi add hoga marks

Aditi Choudhary 7 years, 2 months ago

Yes, of course........

Mayuri Mallick 7 years, 2 months ago

Yes
  • 3 answers

Anushka Singh 7 years, 2 months ago

Cos A

Rajeev Kumar Choudhary 7 years, 2 months ago

Cos A

Aditi Choudhary 7 years, 2 months ago

Cos a
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given AP. Therefore, the sum of first n terms is given by
{tex}S _ { n } = \frac { n } { 2 } \cdot \{ 2 a + ( n - 1 ) d \}{/tex}
{tex}\therefore{/tex} S10 = {tex}\frac{{10}}{2}{/tex}{tex}\cdot{/tex}(2a+9d) {tex}\Rightarrow{/tex}5(2a+9d)=210
{tex}\Rightarrow{/tex}2a+9d=42. ...(i)
Sum of last 15 terms = (S50 - S35).
{tex}\therefore{/tex} (S50 - S35) = 2565
{tex}\Rightarrow{/tex} {tex}\frac{{50}}{2}{/tex}(2a+49d)- {tex}\frac{{35}}{2}{/tex}(2a+34d)=2565
{tex}\Rightarrow{/tex} 25(2a+49d)-35(a+17d)=2565
{tex}\Rightarrow{/tex} (50a-35a)+(1225d-595d)=2565
{tex}\Rightarrow{/tex} 15a+630d = 2565 {tex}\Rightarrow{/tex} a + 42d = 171 ...... (ii)
Therefore, on solving (i) and (ii), we get a=3 and d=4.
Hence, the required AP is 3,7,11,15,19.....

  • 1 answers

Harsh Kumar 7 years, 2 months ago

Tan ©=1/√3 =>©=30° now, 1/1+sin^3©=1/1+(1/2)^3 =1/1+(1/8) =1/(8+1)/8 =1/9/8 =8/9
  • 2 answers

Agrawal Agrawal 7 years, 2 months ago

I got 70 percent

Agrawal Agrawal 7 years, 2 months ago

I am in class 11
  • 7 answers

Rajeev Kumar Choudhary 7 years, 2 months ago

Aanchal equal to should be their

Rajeev Kumar Choudhary 7 years, 2 months ago

(200÷40)×50 (5)×50 250

Arpita Asmit 7 years, 2 months ago

250m

Amit Gupta 7 years, 2 months ago

250

Ak Ak 7 years, 2 months ago

250m

Agrawal Agrawal 7 years, 2 months ago

It's correct bròooooooooooooo

Arghyadeep Kolay 7 years, 2 months ago

(200÷40)×50=250
  • 1 answers

Agrawal Agrawal 7 years, 2 months ago

IMP stands for Inhe Mat Padho
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Let ABC be the right angled triangle such that ∠B = 90° , BC = 6 cm, AB = 8 cm. Let O be the centre and r be the radius of the in circle.

AB, BC and CA are tangents to the circle at P, Nand M.
{tex}\therefore{/tex} OP = ON = OM = r (radius of the circle)
Area of the {tex}\triangle{/tex}ABC = {tex}\frac{1}{2} \times 6 \times 8{/tex}= 24 cm2
By Pythagoras theorem,
CA2 = AB2 + BC2
{tex}\Rightarrow{/tex} CA2 = 82 + 62
{tex}\Rightarrow{/tex} CA2 = 100
{tex}\Rightarrow{/tex} CA = 10 cm
Area of the {tex}\triangle{/tex}ABC = Area {tex}\triangle{/tex}OAB + Area {tex}\triangle{/tex}OBC + Area {tex}\triangle{/tex}OCA
24 = {tex}\frac{1}{2} r \times \mathrm{AB}+\frac{1}{2} r \times \mathrm{B} \mathrm{C}+\frac{1}{2} r \times \mathrm{C} \mathrm{A}{/tex}
24 = {tex}\frac{1}{2} r{/tex}(AB + BC + CA)
{tex}\Rightarrow r=\frac{2 \times 24}{(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})}{/tex}
{tex}\Rightarrow r=\frac{48}{8+6+10}{/tex}
{tex}\Rightarrow r=\frac{48}{24}{/tex}
{tex}\Rightarrow{/tex} r = 2 cm

  • 1 answers

Shaheen Hussain 7 years, 2 months ago

Which subjects
  • 2 answers

Bhadri ? 7 years, 2 months ago

Also measure their length using ur ruler.

Bhadri ? 7 years, 2 months ago

Steps of construction First draw a circle of radius 6cm Then take O as centre and draw a line from O to out side the circle with measure 10 cm and Mark the point as P Now , draw perpendicular bisector of OP mark the point of intersection as M Now measure OM and take M as centre and draw to arcs to the circle with ur compass. And Mark the point where the arc touches the circle as A and B respectively. Now joint AP and BP
  • 2 answers

Arpita Asmit 7 years, 2 months ago

0

Vansh Sehgal 7 years, 2 months ago

Value of cot 90 is 0
  • 4 answers

Dipanshu Kumar 7 years, 2 months ago

35

Shaheen Hussain 7 years, 2 months ago

Cbse pattern ht chuka h ab scl se kuch mark nhi milega

Avika Chaudhary 7 years, 2 months ago

33% of 80....and one has to get passing marks individually in theory as well as in the 20 marks which we get from our schhol...

Ayushi Mittal 7 years, 2 months ago

33
  • 3 answers

Arpita Asmit 7 years, 2 months ago

Yes bro ?? it is proved in the book?

Dipanshu Kumar 7 years, 2 months ago

Yes because sum of rational and irrational is always irrational.

Ananya Sharma 7 years, 2 months ago

Yes,it is
  • 1 answers

Sia ? 6 years, 6 months ago

You can check the syllabus : <a href="https://mycbseguide.com/cbse-syllabus.html">https://mycbseguide.com/cbse-syllabus.html</a>

  • 1 answers

Sia ? 6 years, 6 months ago


Given radius, OP = OQ = 5 cm
Length of chord, PQ = 4 cm
OT {tex}\perp{/tex} PQ,
{tex}\therefore{/tex} PM = MQ = 4 cm [Perpendicular draw from the centre of the circle to a chord bisect the chord]
In right {tex}\triangle{/tex}OPM, OP2 = PM2 + OM2
{tex}\Rightarrow{/tex} 52 = 42 + OM2
{tex}\Rightarrow{/tex} OM2 = 25 – 16 = 9
Hence OM = 3cm
In right {tex}\triangle{/tex}PTM, PT2 = TM2 + PM2 {tex}\rightarrow{/tex} (1)
OPT = 90o [Radius is perpendicular to tangent at point of contact]
In right {tex}\triangle{/tex}OPT, OT2 = PT2 + OP2 {tex}\rightarrow{/tex} (2)
From equations (1) and (2), we get
OT2 = (TM2 + PM2) + OP2
{tex}\Rightarrow{/tex} (TM + OM)2 = (TM2 + PM2) + OP2
{tex}\Rightarrow{/tex} TM2 + OM2 + 2 {tex}\times{/tex} TM {tex}\times{/tex} OM = TM2 + PM2 + OP2
{tex}\Rightarrow{/tex} OM2 + 2 {tex}\times{/tex} TM {tex}\times{/tex} OM = PM2 + OP2
{tex}\Rightarrow{/tex} 32 + 2 {tex}\times{/tex} TM {tex}\times{/tex} 3 = 42 + 52
{tex}\Rightarrow{/tex} 9 + 6TM = 16 + 25
{tex}\Rightarrow{/tex} 6TM = 32
{tex}\Rightarrow{/tex} TM ={tex}\frac{16}3{/tex}
Equation (1) becomes,
PT2 = TM2 + PM2
= ({tex}\frac{16}3{/tex})2 + 42
= ({tex}\frac{256}9{/tex}) + 16 = {tex}\frac{256+ 144}9{/tex}
= ({tex}\frac{400}9{/tex}) = ({tex}\frac{20}3{/tex})2
Hence PT ={tex}\frac{20}3{/tex}
Thus, the length of tangent PT is ({tex}\frac{20}3{/tex}) cm.

  • 1 answers

Sia ? 6 years, 6 months ago

Sum of the volumes of three given spheres = {tex}\frac43\mathrm\pi{/tex}[(6)3 + (8)3 + (10)3
= {tex}\frac43\mathrm\pi{/tex}[216 + 512 + 1000]
= {tex}\frac43\mathrm\pi{/tex} × 1728 = 4{tex}\pi{/tex} × 576 = 2304π cm3
Let R be the radius of single solid sphere, since volume remains the same
 ∴ {tex}\frac43\mathrm\pi{/tex}R3 = 2304 {tex}\pi{/tex}
⇒ R3 ={tex}\frac{2304\times3}4=\;576\times3{/tex}
⇒ R3 =  1728 = (12)3
 ∴ R = 12 cm

Me
  • 1 answers

Sapna Jain 7 years, 2 months ago

Me akso
  • 1 answers

Arpita Asmit 7 years, 2 months ago

What is the question plz write clearly

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App