No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Akash Modanwal 7 years, 2 months ago

(a+b)(a-b)

Devansh Gupta 7 years, 2 months ago

(a+b)^2-2ab
  • 1 answers

Sia ? 6 years, 4 months ago

By the given condition of question 
{tex}\sec \theta = x + \frac { 1 } { 4 x }{/tex}
{tex}\therefore \quad \tan ^ { 2 } \theta = \sec ^ { 2 } \theta - 1{/tex}
{tex}\Rightarrow \quad \tan ^ { 2 } \theta = \left( x + \frac { 1 } { 4 x } \right) ^ { 2 } - 1 = x ^ { 2 } + \frac { 1 } { 16 x ^ { 2 } } + \frac { 1 } { 2 } - 1 = x ^ { 2 } + \frac { 1 } { 16 x ^ { 2 } } - \frac { 1 } { 2 } = \left( x - \frac { 1 } { 4 x } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad \tan \theta = \pm \left( x - \frac { 1 } { 4 x } \right){/tex}
{tex}\Rightarrow \quad \tan \theta = \left( x - \frac { 1 } { 4 x } \right) \text { or, } \tan \theta = - \left( x - \frac { 1 } { 4 x } \right){/tex}
CASE 1: When {tex}\tan \theta = - \left( x - \frac { 1 } { 4 x } \right) :{/tex} In this case,
{tex}\sec \theta + \tan \theta = x + \frac { 1 } { 4 x } + x - \frac { 1 } { 4 x } = 2 x{/tex}
CASE 2: When {tex}\theta = - \left( x - \frac { 1 } { 4 x } \right) :{/tex} In this case,
{tex}\sec \theta + \tan \theta = \left( x + \frac { 1 } { 4 x } \right) - \left( x - \frac { 1 } { 4 x } \right) = \frac { 2 } { 4 x } = \frac { 1 } { 2 x }{/tex}
Hence, {tex}\sec \theta + \tan \theta = 2 x \text { or } , \frac { 1 } { 2 x }{/tex}

  • 2 answers

Nidhi Kaushik 7 years, 2 months ago

Meine dekha lekin mujhe nhi samajh aya

Amit Gupta 7 years, 2 months ago

Rs ki book me cloud wala example dekh lo....same vaise hi hoga .....kyun ki iss que me mirror ki b kuch properties use hongi...
  • 3 answers

Nidhi Kaushik 7 years, 2 months ago

Thank u yr

Nikhil Ojha 7 years, 2 months ago

75,85,95,105

Dhruv A. 7 years, 2 months ago

75,85,95,105 By anglesum property
  • 1 answers

Rdx Trox 7 years, 2 months ago

2 pie Rh+2pie rh+2pie(R square - r square)
  • 0 answers
  • 1 answers

..... ...... 7 years, 2 months ago

2x^3+3x^2-8x+3
  • 6 answers

Ananya Sharma 7 years, 2 months ago

What is the my profit to follow you

Vishal Kaushik 7 years, 2 months ago

Follow me on brainly I'd is vishal619212

Ananya Sharma 7 years, 2 months ago

Hi

Vishal Kaushik 7 years, 2 months ago

Hi ananya

Ananya Sharma 7 years, 2 months ago

Please write question clearly.

Ananya Sharma 7 years, 2 months ago

What area theorem?
  • 1 answers

Vanshika Gupta 7 years, 2 months ago

n/2[2a+(n-1)d]=Sn or n/2(a+l)
  • 1 answers

Vanshika Gupta 7 years, 2 months ago

It will be having a non terminating repeated decimal expansion
  • 0 answers
  • 1 answers

Ananya Sharma 7 years, 2 months ago

You did not tell me profit yet
  • 1 answers

Vanshika Gupta 7 years, 2 months ago

In triangle ABC, angle C=50 and angel B=90 (angle in a semi circle is 90) Therefore Angle A=40 AT is perpendicular to OA Therefore angle OAT =90 Angle BAT =130
  • 1 answers

Shreeprasad Mahajan 7 years, 2 months ago

480
  • 1 answers

Sahil Tushir 7 years, 2 months ago

Area of ABD + area of ACD=area ABCD 35/2. + 95/2. = 65 sq unit answer
  • 1 answers

Ankush Singhania 7 years, 2 months ago

99/2(2×11+98×2)
  • 5 answers

Aman Jamwal 7 years, 2 months ago

Nishant my same qes

Aman Jamwal 7 years, 2 months ago

Yes

Nishant Singhal 7 years, 2 months ago

Chapter no.

Aman Jamwal 7 years, 2 months ago

Bolo na

Aman Jamwal 7 years, 2 months ago

Chapter no
  • 1 answers

Sia ? 6 years, 6 months ago

Let the window be at P at a height of 15 metres above the ground and CD be the house on the opposite side of the street such that the angles of deviation of the top D of house CD as seen from P is of 30o and the angle of depression of the foot C of house CD as seen from P is of 45o.

Let h metres be the height of the house CD.
We have
QD = CD- CQ = CD -A P = ( h - 15) metres.
In {tex}\triangle P Q C,{/tex} we have
tan 45o{tex}\frac { Q C } { P Q } \Rightarrow 1 = \frac { 15 } { P Q } \Rightarrow P Q = 15{/tex} metres.
In {tex}\triangle P Q C,{/tex} we have
{tex}\tan 30 ^ { \circ } = \frac { Q D } { P Q }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { \sqrt { 3 } } = \frac { h - 15 } { 15 } \Rightarrow h - 15 = \frac { 15 } { \sqrt { 3 } } \Rightarrow h - 15 = 5 \sqrt { 3 }{/tex}
{tex}\Rightarrow \quad h = 15 + 5 \times 1.732 = 23.66{/tex}metres.
Hence, the height of the opposite house is 23.66 metres.

  • 1 answers

Neeraj Kumar 7 years, 2 months ago

Cos67-Sin23

As we know that Cos(90-A)=SinA

Cos67-Sin23=

Cos67-Cos(90-23)=

Cos67-Cos67=0

  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let  A → (0, -1), B → (2, 1) and C→ (0, 3) be the vertices of the triangle ABC. Let D, E and F be the mid-points of sides BC, CA and AB respectively. Then, 
 
{tex}D \to \left( {\frac{{2 + 0}}{2},\frac{{1 + 3}}{2}} \right){/tex}
{tex} \Rightarrow D \to \left( {1,2} \right){/tex}
{tex}E \to \left\{ {\frac{{0 + 0}}{2},\frac{{3 + ( - 1)}}{2}} \right\}{/tex}
{tex}\Rightarrow E \to (0,1){/tex}
{tex}F \to \left\{ {\frac{{2 + 0}}{2},\frac{{1 + ( - 1)}}{2}} \right\}{/tex}
{tex}\Rightarrow F \to (1,0){/tex}
{tex}\therefore{/tex} Area of the triangle DEF
{tex}= \frac{1}{2}{/tex}[1(1 - 0) + 0(0 - 2) + 1(2 - 1)]
{tex}= \frac{1}{2}{/tex}[1 + 0 + 1]
= 1 square unit.
Again, area of the triangle ABC
{tex}= \frac{1}{2}{/tex}[0(1 - 3) + 2 {3 - (-1)} + 0(-1 -1)]
= 4 square units
{tex}\therefore{/tex} Ratio of the area of the triangle formed to the area of the given triangle = 1 : 4

  • 1 answers

Amit Gupta 7 years, 2 months ago

According to the property of llgm its opposti sides r equal ... Whi laga do solve ho jayega
  • 1 answers

Sia ? 6 years, 4 months ago

Let (-1, 6) divides line segment joining the points (-3, 10) and(6, -8) in k:1.
Using Section formula, we get
{tex} - 1 = \frac{{( - 3) \times 1 + 6 \times k}}{{k + 1}}{/tex} {tex}4 \Rightarrow - k - 1 = ( - 3 + 6k){/tex}
⇒ −7k = −2 ⇒ k= {tex}\frac{2}{7}{/tex}
Therefore, the ratio is {tex}\frac{2}{7}:1{/tex} which is equivalent to 2:7.
Therefore, (-1, 6) divides line segment joining the points (-3, 10) and (6, -8) in 2:7.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App