No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Sweta Verma 7 years, 2 months ago

12x^ + 18x + 10x + 15 =12x^ + 8x +21x + 14 12x^ +28x + 15=12x^+29x + 14 12x^ +28x + 15-12x^-29x -14 -x +1 answer

Rohit Kumar 7 years, 2 months ago

12x+18×+15+10×=12×+8×+14+21× x=1 ans
  • 1 answers

Sia ? 6 years, 6 months ago

We have,
6x = sec {tex}\theta{/tex}........(i)
and {tex}\frac { 6 } { x } = \tan \theta{/tex} ........(ii)
Adding (i) and (ii), we get
{tex}6 \left( x + \frac { 1 } { x } \right) = ( \sec \theta + \tan \theta ){/tex}.......(iii)
Subtracting (ii) from (i), we get
{tex}6 \left( x - \frac { 1 } { x } \right) = ( \sec \theta - \tan \theta ){/tex}........(iv)
Multiplying the corresponding sides of (iii) and (iv), we get
{tex}36 \left( x ^ { 2 } - \frac { 1 } { x ^ { 2 } } \right) = \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) = 1{/tex}
{tex}\Rightarrow 9 \left( x ^ { 2 } - \frac { 1 } { x ^ { 2 } } \right) = \frac { 1 } { 4 }{/tex}

  • 2 answers

Nisha Pawar 7 years, 2 months ago

Roots are not in points may be

Rupal ???? 7 years, 2 months ago

Not possible
  • 2 answers

Bhavya Taparia 7 years, 2 months ago

0.00119474313

Shaheen Hussain 7 years, 2 months ago

0.00119474313
  • 1 answers

Sia ? 6 years, 6 months ago

LHS = {tex}\frac{\tan A}{\sec A-1}+\frac{\tan A}{\sec A+1}{/tex}
{tex}=\frac{\tan A(\sec A+1)+\tan A(\sec A-1)}{(\sec A-1)(\sec A+1)}{/tex}
{tex}=\frac{\tan A \cdot \sec A+\tan A+\tan A \sec A-\tan A}{\sec ^{2} A-1}{/tex}
{tex}=\frac{2 \tan A \sec A}{\tan ^{2} A}{/tex} [{tex}\because{/tex} {tex}(sec^2\theta  - 1) = tan^2\theta {/tex}]
{tex}=\frac{2 \sec A}{\tan A}{/tex}
{tex}=\frac{2 \frac{1}{\cos A}}{\frac{\sin A}{\cos A}}{/tex}
{tex}=2 \times \frac{1}{\cos A} \times \frac{\cos A}{\sin A}{/tex}
{tex}=\frac{2}{\sin \mathrm{A}}{/tex}
{tex}= 2 cosec\ A{/tex} = RHS

  • 2 answers

Aditi Richhariya 7 years, 2 months ago

1.732 is square root of 3

Chiku Kumar 7 years, 2 months ago

Since the number 3 is not a perfect square hence the root for 3 isn't a whole number It is root (3) or approximately equal to 1.7302 Hope it will help you.
  • 1 answers

Sia ? 6 years, 6 months ago

Let, the two zeroes of the polynomial f(x) = 4x2 - 8kx - 9 be α and -α.
Comparing f(x) = 4x2 - 8kx - 9  with ax2+bx+c we get
a = 4; b = -8k and c = -9.
Sum of the zeroes =  α + (-α) ={tex}-\frac ba=\;-\frac{-8k}4 {/tex}
0 = 2k
k = 0

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Given: A circle touches the side BC of a ΔABC at P and AB and AC produced at Q and R respectively.

To Prove: AQ = {tex}\frac 12{/tex} perimeter of {tex}\triangle{/tex}ABC
Proof: {tex}\because{/tex}Length of the two tangents fron an external point to a circle are equal
{tex}\therefore{/tex} AQ = AR ........(1)
BQ = BP ........ (2)
CP = CR .........(3)
{tex}\therefore{/tex} Perimeter of {tex}\triangle{/tex}ABC = AB + BC + AC
= AB + (BP + CP) + AC
= (AB + BQ)+ (CR + AC) [Using (2) and (3)]
= AQ + AR
= AQ - AR
= AQ + AQ [from (1)]
= 2AQ
{tex}\Rightarrow{/tex} AQ = {tex}\frac 12{/tex} perimeter of {tex}\triangle{/tex}ABC

  • 0 answers
  • 0 answers
  • 1 answers

Amit Gupta 7 years, 2 months ago

A set of infinite points...
  • 1 answers

Ananya Sharma 7 years, 2 months ago

Let 1/x+y be a and 1/x-y be b.then the eq. Becomes 44a+30b and 55a+40b. Solve it and find a and b. Put in let. Then,again solve.
  • 1 answers

Sia ? 6 years, 6 months ago

Given {tex}\triangle A B C{/tex} and {tex}\triangle PQR{/tex} in Which BC= a, CA = b, AB = c and QR = p, RP = q, PQ = r.
Also,  {tex}\triangle A B C \sim \triangle P Q R{/tex}
To Prove {tex}\frac { a } { p } = \frac { b } { q } = \frac { c } { r }{/tex}
{tex}= \frac { a + b + c } { p + q + r }{/tex}
Proof Since {tex}\triangle ABC{/tex} and {tex}\triangle PQR{/tex} are similar, therefore their corresponding sides are proportional.
{tex}\therefore \quad \frac { a } { p } = \frac { b } { q } = \frac { c } { r } = k{/tex} (say) ...(i)
{tex}\Rightarrow \quad a = k p , b = k q{/tex} and {tex}c = k r{/tex}
{tex}\therefore \quad \frac { \text { perimeter of } \triangle A B C } { \text { perimeter of } \triangle P Q R }{/tex}
{tex}= \frac { a + b + c } { p + q + r }{/tex}
{tex}= \frac { k p + k q + k r } { p + q + r }{/tex}
{tex}= \frac { k ( p + q + r ) } { ( p + q + r ) } = k{/tex} ...(ii)
From (i) and (ii), we get
{tex}\frac { a } { p } = \frac { b } { q } = \frac { c } { r }{/tex}
{tex}= \frac { a + b + c } { p + q + r }{/tex}
{tex}= \frac { \text { perimeter of } \triangle A B C } { \text { perimeter of } \triangle P Q R }{/tex} [each equal to k].

  • 0 answers
  • 3 answers

Shivani Sudeshi 7 years, 2 months ago

I know a trick it is easy to do Sakshi

$#@|\|@¥@ Khan 7 years, 2 months ago

By applying the trickkkkk

Jitesh Kamboj 7 years, 2 months ago

Please write the triginometry ratio every time when doing sum
  • 1 answers

Aastha Sekhri 7 years, 2 months ago

Apply the formula D=bsquare -4ac 0=(-k root 3)square -4 (3)(4) 0=3k square -48 48=3k square 48÷3=k square 16 = k square K=4,k=-4 [k will have 2 values because after doing under root we have 2 values] .. I hope it will help you .....☺
  • 1 answers

Sia ? 6 years, 6 months ago

According to question
PR = RQ or R is mid-point of PQ
Using mid-point formula x {tex}= \frac { x _ { 1 } + x _ { 2 } } { 2 }{/tex} and y {tex}= \frac { y _ { 1 } + y _ { 2 } } { 2 }{/tex}
{tex}\frac { b - 2 + 4 } { 2 }{/tex} = - 3
{tex}\Rightarrow{/tex} b + 2 = - 6 
{tex}\Rightarrow{/tex} b = - 8

  • 1 answers

Amit Gupta 7 years, 2 months ago

Root will be real nd distint
  • 1 answers

Sia ? 6 years, 4 months ago

We will prove this by contradiction.
Let us suppose that (3+2 {tex}\sqrt { 5 }{/tex}) is rational.
It means that we have co-prime integers a and b such that
{tex}\frac { a } { b } = 3 + 2 \sqrt { 5 } \quad \frac { a } { b } - 3 = 2 \sqrt { 5 }{/tex}

{tex}\Rightarrow \frac{{a - 3b}}{b} = 2{\sqrt 5 \,{ \Rightarrow }}\frac{{a - 3b}}{{2b}} = \sqrt 5 {/tex}  ....(1)
a and b are integers.
It means L.H.S of (1) is rational but we know that {tex}\sqrt { 5 }{/tex} is irrational. It is not possible. Therefore, our supposition is wrong. (3+2 {tex}\sqrt { 5 }{/tex}) cannot be rational.
Hence, (3+2 {tex}\sqrt { 5 }{/tex}) is irrational.

  • 4 answers

A.K. Mahi ? 7 years, 2 months ago

Prime numbers as well as coprime numbers.....

Aditi Choudhary 7 years, 2 months ago

Prime number...

Akash Kundu 7 years, 2 months ago

Prime numbers????

Vidant Thapa 7 years, 2 months ago

Prime numbers
  • 1 answers

Shivani Sudeshi 7 years, 2 months ago

Trigonometry???
  • 3 answers

Aastha Sekhri 7 years, 2 months ago

Ask the question i can solve

Tushar Gupta 7 years, 2 months ago

Plzz tell me

Ananya Sharma 7 years, 2 months ago

I can solve
  • 1 answers

Amit Gupta 7 years, 2 months ago

Its a very easy que......bt i can't solve it on the phone....it will be better for u ,if u down load the app "ncert solutions"
  • 1 answers

Himanshi Yadav 7 years, 2 months ago

all written in ncert book

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App