No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

Given:
{tex}∆ABC\sim∆PQR{/tex}
and {tex}ar∆ABC=ar∆PQR{/tex}

To prove: {tex}∆ABC\cong∆PQR{/tex}
Proof: {tex}∆ABC\sim∆PQR{/tex} 
Also {tex}\operatorname { ar } ( \Delta A B C ) = \operatorname { ar } ( \Delta P Q R ){/tex} (given)
or, {tex}\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = 1{/tex}
Or {tex}\frac{AB^2}{PQ^2}=\frac{BC^2}{QR^2}=\frac{CA^2}{RP^2}=1{/tex}
Or {tex}\frac{AB}{PQ}=\frac{BC}{QR}=\frac{CA}{RP}=1{/tex}
Hence we get that
AB=PQ,BC=QR and CA=RP
Hence {tex}∆ABC\cong ∆PQR{/tex}

  • 3 answers

Hariom Singh 7 years, 2 months ago

1

Himsnshu Sharma 7 years, 2 months ago

sin90-65.cos65 Cos65.cos65 =1

Ananya Sharma 7 years, 2 months ago

1
  • 1 answers

Harish Raghavendar 7 years, 2 months ago

Pls take lcm and pls factorise and cancel out cos theta u will get the answer
  • 1 answers

Kartikeya Katariya 7 years, 2 months ago

First add the ratio no.s and then divide with 56 then multiply that with 1,2,3&5 so that the ans will be of 1 , 2 ,3&4thparts ,respectively
  • 5 answers

Hariom Singh 7 years, 2 months ago

1

Sagar Jogi 7 years, 2 months ago

1

Harish Raghavendar 7 years, 2 months ago

SinA. CosecA = sinA. 1/sinA = 1 (sinA and sinA gets cancelled)

Ajay Dhanush 7 years, 2 months ago

1

Yogita Ingle 7 years, 2 months ago

SinA cosec A = sin A  × 1/sinA = 1

  • 1 answers

Sia ? 6 years, 6 months ago

Let h is height of big building,here as per the diagram.
AE = CD = 8 m (Given)
BE = AB-AE = (h - 8) m
Let  AC = DE = x
Also, {tex}\angle F B D = \angle B D E = 30 ^ { \circ }{/tex} 
{tex}\angle F B C = \angle B C A = 45 ^ { \circ }{/tex}

In {tex}\triangle {/tex}ACB, {tex}\angle A = 90 ^ { \circ }{/tex} 
{tex}\tan 45 ^ { \circ } = \frac { A B } { A C }{/tex} 
{tex}\Rightarrow {/tex} x = h, ...(i)
In {tex}\vartriangle {/tex}BDE, {tex}\angle E = 90 ^ { \circ }{/tex} 
{tex}\tan 30 ^ { \circ } = \frac { B E } { E D }{/tex} 
{tex}\Rightarrow \quad x = \sqrt { 3 } ( h - 8 ){/tex}  .(ii) 
From (i) and (ii), we get 
{tex}h = \sqrt { 3 } h - 8 \sqrt { 3 }{/tex}
h(√3 - 1) = 8√3
h = {tex}\frac{8\sqrt3}{\sqrt3-1}=\frac{8\sqrt3}{\sqrt3-1}×\frac{\sqrt3+1}{\sqrt3+1}{/tex}
= {tex}\frac{1}{2}×(24+8√3)=\frac{1}{2}×(24+13.84)=18.92 m{/tex}
Hence height of the multistory building is 18.92 m and the distance between two buildings is 18.92 m.

  • 2 answers

Vaibhav Parmar 7 years, 2 months ago

arre congruent prove kr do na aisa ek example bhi toh h book me

Amit Gupta 7 years, 2 months ago

Then what ?
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Given, tan θ + sec θ = {tex}l{/tex}........(1)

We know that, secθ – tan2 θ = 1.......(2)

Now, sec θ + tan θ =  {tex}l{/tex} [ from (1) ]

⇒ (sec θ + tan θ) {tex}\frac { ( \sec \theta - \tan \theta ) } { \sec \theta - \tan \theta } = 1{/tex}

⇒ {tex}\frac { \sec ^ { 2 } \theta - \tan ^ { 2 } \theta } { \sec \theta - \tan \theta } = l{/tex}   

⇒ {tex}\frac { 1 } { \sec \theta - \tan \theta } = l{/tex} [ from equation (2) ]

or, sec θ – tan θ = {tex}\frac { 1 } { l }{/tex} ........(3)

Now, to get sec θ , eliminating tan θ from (1) and (3)

adding (1) and (3) we get :-

⇒ 2 sec θ = {tex}l + \frac { 1 } { l }{/tex}

⇒ 2 sec θ = {tex}\frac { l ^ { 2 } + 1 } { l }{/tex}

⇒ sec θ = {tex}\frac { l ^ { 2 } + 1 } { 2 l }{/tex}

Hence, proved.

  • 0 answers
  • 0 answers
  • 1 answers

Kartikeya Katariya 7 years, 2 months ago

Read the question 1st then make the equation & just put it on graph
  • 1 answers

Kanika Jain 7 years, 2 months ago

6 +√2=a/b Here a nd b are co primes √2=a/b-6 √2=a-6b/b We know that √2is irrational So irrational = rational - rational/rational This cant be possible So√2is irrational
  • 1 answers

Sia ? 6 years, 6 months ago

To prove :
{tex}3 \left( A B ^ { 2 } + B C ^ { 2 } + C A ^ { 2 } \right) = 4 \left( A D ^ { 2 } + B E ^ { 2 } + C F ^ { 2 } \right){/tex}

In triangle sum of squares of any two sides is equal to twice the square of half of the third side, together with twice the square of median bisecting it.
If AD is the median 
{tex}A B ^ { 2 } + A C ^ { 2 } = 2 \left\{ A D ^ { 2 } + \frac { B C ^ { 2 } } { 4 } \right\}{/tex}
or, {tex}2 \left( A B ^ { 2 } + A C ^ { 2 } \right) = 4 A D ^ { 2 } + B C ^ { 2 }{/tex} ...(i)
Similarly by taking BE & CF as medians, 
{tex}2 \left( A B ^ { 2 } + B C ^ { 2 } \right) = 4 B E ^ { 2 } + A C ^ { 2 }{/tex} ...(ii)
{tex}2 \left( A C ^ { 2 } + B C ^ { 2 } \right) = 4 C F ^ { 2 } + A B ^ { 2 }{/tex} ...(iii)
By adding, (i), (ii) and (iii), we get 
{tex}3 \left( A B ^ { 2 } + B C ^ { 2 } + A C ^ { 2 } \right) = 4 \left( A D ^ { 2 } + B E ^ { 2 } + C F ^ { 2 } \right){/tex}
Hence proved.

  • 1 answers

Bhavya Taparia 7 years, 2 months ago

826
  • 1 answers

Aman Kasaundhan 7 years, 2 months ago

Underroot3+1/Underroot3 -1 3+1-underroot3/underroot3 4-underroot3/underroot3 × underroot3 /underroot3 1/3 Answer
  • 1 answers

Ananya Sharma 7 years, 2 months ago

n=7, a=-8
  • 2 answers

Deepak Choudhary 7 years, 2 months ago

Sn=n/2(a+l) 144=9/2(a+28) 288=9(a+28) 32=a+28 a=32-28 a=4

Ananya Sharma 7 years, 2 months ago

a=4
  • 1 answers

Sia ? 6 years, 6 months ago

The required number is the HCF of (245 - 5) and (1029 - 5) i.e., 240 and 1024.
{tex}1024 = 240 \times 4 + 64{/tex}
{tex}240 = 64 \times 3 + 48{/tex}
{tex}64 = 48 \times 1 + 16{/tex}
{tex}48 = 16 \times 3 + 0{/tex}
{tex}\therefore H C F \text { is } 16{/tex}.

  • 4 answers

Viru Singh 7 years, 2 months ago

6a+3=9 6a=9-3 6a=6 a=1

Dosad Mansi Bisht 7 years, 2 months ago

6a+3=9 6a=9-3 6a=6 a=6÷6 a=1

Samrat Anurag 7 years, 2 months ago

a=1

Ananya Sharma 7 years, 2 months ago

a=1
a-3
  • 1 answers

Dipanshu Kumar 7 years, 2 months ago

Means
  • 1 answers

A.K. Mahi ? 7 years, 2 months ago

Here, Product of zeroes=4 c/a = 4 -6/a = 4 (c=-6) a = -6/4 a = -3/2 (Ans).
  • 5 answers

Kartikeya Katariya 7 years, 2 months ago

Again and again use of division lemma till the ans not come

Kartikeya Katariya 7 years, 2 months ago

Again and again use of division lemma

Ujjwal Kumar 7 years, 2 months ago

a=bq+r{where o<=r<b}

Kamal Kumar 7 years, 2 months ago

a=bq+r(0<=r)

A.K. Mahi ? 7 years, 2 months ago

The euclid's division algorithm:-a=bq+r(where 0≤r<b). Here,a=dividend,b=divisor,q=quotient and r= remainder.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App