No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

Check NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 1 answers

Sia ? 6 years, 6 months ago

Join OP, Suppose OP meets the circle at Q. Join AQ.

We have,
OP = diameter
{tex} \Rightarrow{/tex} OQ + PQ = diameter
{tex} \Rightarrow{/tex} PQ = diameter - radius
{tex} \Rightarrow{/tex} PQ = radius.
Therefore, OQ = PQ = radius.
Thus, OP is the hypotenuse of right triangle OAP and Q is the mid-point of OP.
Now,
In {tex} \triangle{/tex}OPA,
{tex} \sin \angle OPA = \frac{{OA}}{{OP}} = \frac{r}{{2r}}{/tex} [Give OP is the diameter of the circle]
{tex} \Rightarrow \sin \angle OPA = \frac{1}{2} = \sin 30^\circ{/tex}
{tex} \Rightarrow \angle OPA = 30^\circ{/tex}
Similarly, it can be proved that {tex} \angle OPB = 30^\circ {/tex}.
Now, {tex} \angle APB = \angle OPA + \angle OPB{/tex} {tex}= 30^\circ + 30^\circ = 60^\circ{/tex}
In {tex} \triangle{/tex}PAB,
PA = PB [Lengths of tangents drawn from an external point to a circle are equal]
{tex}\Rightarrow \angle PAB = \angle PBA{/tex} ....(i) [Equal sides have equal angles opposite to them]
{tex} \angle PAB + \angle PBA + \angle APB = 180^\circ {/tex} [Angle sum property]
{tex}\Rightarrow \angle PAB + \angle PAB = 180^\circ - 60^\circ = 120^\circ {/tex} [Using (i)]
{tex} \Rightarrow 2\angle PAB = 120^\circ{/tex}
{tex} \Rightarrow \angle PAB = 60^\circ{/tex} ....(ii)
From (i) and (ii)
{tex} \angle PAB = \angle PBA = \angle APB = 60^\circ {/tex}
{tex}{/tex} Therefore, {tex} \triangle{/tex}PAB is an equilateral triangle.

  • 1 answers

Bavika Raj 7 years, 2 months ago

Take n=3q Then find
  • 1 answers

Roshan Pathak 5 years, 8 months ago

A line join to poin of a circle exist inside the circle
  • 0 answers
  • 2 answers

Avika Chaudhary 7 years, 2 months ago

Reapper cmprtmnt wlo se alg hge....

Avika Chaudhary 7 years, 2 months ago

March mw hgw core subjects ke nd vocational ke febuary me hge
  • 1 answers

Sia ? 6 years, 6 months ago

Check the pattern here : <a href="https://mycbseguide.com/cbse-syllabus.html">https://mycbseguide.com/cbse-syllabus.html</a>

  • 3 answers

Ashish Kumar 7 years, 2 months ago

3rd week of the february

Manoj Singh 7 years, 2 months ago

6 march to 22 march but yet discssion not a confirm date.

Vinay Choudhary 7 years, 2 months ago

B/w feb. And march.
  • 3 answers

Yogita Ingle 7 years, 2 months ago

sin 0 = 0
cos 0 = 1
sin 0 - cos 0 = 0 - (1) = -1

Sambit Pratap 7 years, 2 months ago

sin0=0 cos0=1 So your question is wrong

Sujith Sankar 7 years, 2 months ago

Sin0- COS0=1
  • 2 answers

Maira Sheikh 7 years, 2 months ago

Kon nhi bta rha h ji

Yash Jain 7 years, 2 months ago

Nhi bta rhe jao bhagho
  • 1 answers

Sia ? 6 years, 6 months ago

Let a and b are numbers and HCF = x 
Then LCM = 14x
Now sum of HCF and LCM
x+14x =600
15x = 600
x = 40
Hence HCF=40 and LCM=14{tex}\times{/tex}40
Given a=280 and b=?
We know that
{tex}\times{/tex} b = HCF {tex}\times{/tex} LCM
So {tex}\mathrm b=\frac{40\times14\times40}{280}=2\times40=80{/tex}
Hence the other number = 80

  • 3 answers

Preeti Roy 7 years, 2 months ago

Area of minor sector=theta/360×πr square Area of major segment=πr square -area of minor segment Area of minor segment=theta/360×πr square-1/2 r square sin theta ×cos theta

Aisha Jain 7 years, 2 months ago

Kisi ko nhi pta ?

Aisha Jain 7 years, 2 months ago

Plz frndzzzz answer ....
  • 1 answers

Apurv Gautam 7 years, 2 months ago

draw any of its digonals to form 2 diffrent triangles and find their area then add both area so you can find area of quadrilateral
  • 1 answers

Priya Kumari 7 years, 2 months ago

Not understandable
  • 1 answers

Sia ? 6 years, 6 months ago

Let the point P(2, y) divide the line segment joining the points A(-2, 2) and B(3, 7) in the ratio {tex} k:1{/tex}
Then, the coordinates of P are
{tex}\left[ \frac { 3 k + ( - 2 ) \times 1 } { k + 1 } , \frac { 7 k + 2 \times 1 } { k + 1 } \right]{/tex}
{tex}= \left[ \frac { 3 k - 2 } { k + 1 } , \frac { 7 k + 2 } { k + 1 } \right]{/tex}
But the coordinates of P are given as {tex} (2, y){/tex}
{tex}\therefore \quad \frac { 3 k - 2 } { k + 1 } = 2{/tex}
{tex}\Rightarrow{/tex} {tex}3k - 2 = 2k + 2{/tex}
{tex}\Rightarrow{/tex} {tex}3k - 2k = 2 + 2{/tex}
{tex}\Rightarrow{/tex} {tex}k = 4{/tex}
{tex}\frac { 7 k + 2 } { k + 1 } = y{/tex}
Putting the values of k, we get
{tex}\frac { 7 \times 4 + 2 } { 4 + 1 } = y{/tex}

{tex}\frac { 30 } { 5 } = y{/tex}
{tex}6 = y{/tex}
i.e., {tex} y = 6{/tex}

  • 2 answers

Vinay Choudhary 7 years, 2 months ago

R.D. SHARMA

Priya Kumari 7 years, 2 months ago

All are good but ncert is the best....?
  • 0 answers
  • 3 answers

Pari???️ Dahiya 7 years, 2 months ago

1/2+1/2=1and 1+3/4=1.75 so, the answer was 1.75

Kamal Kumar 7 years, 2 months ago

1.75

Ali Ahmad 7 years, 2 months ago

1.7
  • 2 answers

Pari???️ Dahiya 7 years, 2 months ago

L+(n/2-c.f)×h

Aastha Sekhri 7 years, 2 months ago

Median=lower limit +[n÷2-cumulative frequency whole ÷by frequency ]×h
  • 1 answers

Aastha Sekhri 7 years, 2 months ago

Please check the question it should be tan theta upon 1 -cot thetha .... then put the identity of tan theta =sin thetha upon cos thetha after that take their LCM'S your answer will come .
  • 1 answers

Sia ? 6 years, 6 months ago


Let AP = y m and BC = xm.
{tex}\therefore {/tex} In  {tex}\triangle B A P = \frac { B A } { P A } = \tan 45 ^ { \circ }{/tex} 
{tex}\Rightarrow \quad \frac { 20 } { y } = 1{/tex} 
{tex}\Rightarrow {/tex} y = 20 
In {tex}\triangle {/tex}CAP {tex}\frac { C A } { P A } = \tan 60 ^ { \circ }{/tex}
{tex}\Rightarrow \quad \frac { 20 + x } { y } = \sqrt { 3 }{/tex} 
{tex}\Rightarrow \quad 20 + x = y \sqrt { 3 }{/tex} (using y = 20) 
{tex}\Rightarrow \quad 20 + x = 20 \sqrt { 3 }{/tex} 
{tex}x = 20 \sqrt { 3 } - 20{/tex} 
{tex}= 20 ( \sqrt { 3 } - 1 ){/tex} 
{tex}= 20 \times ( 1 \cdot 73 - 1 ){/tex} 
Hence, height of the tower = 14.64 m

  • 3 answers

Rajeev Kumar Choudhary 7 years, 2 months ago

No, it is not a quadratic equation

Aarya Rastogi 7 years, 2 months ago

No it is not a quadratic equation

Nadeem Kazi 7 years, 2 months ago

X
  • 2 answers

Rajeev Kumar Choudhary 7 years, 2 months ago

TanA----- Cot A

Kartikeya Katariya 7 years, 2 months ago

CotA
  • 1 answers

Sia ? 6 years, 6 months ago

To prove the given result,we will use the following theorm.

The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle

Since AD is the bisector of {tex}\angle{/tex}A of {tex}\Delta{/tex}ABC.

{tex}\therefore \quad \frac { A B } { A C } = \frac { B D } { D C }{/tex} [by above theorm]
{tex}\Rightarrow \quad \frac { A B } { A C } + 1 = \frac { B D } { D C } + 1{/tex}[Adding 1 on both sides]
{tex}\Rightarrow \quad \frac { A B + A C } { A C } = \frac { B D + D C } { D C }{/tex}
{tex}\Rightarrow \quad \frac { A B + A C } { A C } = \frac { B C } { D C }{/tex} ... (i)
In {tex}\Delta{/tex}'s CDE and CBA, we have
{tex}\angle{/tex}DCE = {tex}\angle{/tex}BCA = {tex}\angle{/tex}C [Common]
{tex}\angle{/tex}BAC = {tex}\angle{/tex}DEC [Each equal to 90°]
So, by AA-criterion of similarity, we have
{tex}\Delta{/tex}CDE ~ {tex}\Delta{/tex}CBA
{tex}\Rightarrow \quad \frac { C D } { C B } = \frac { D E } { B A }{/tex}
{tex}\Rightarrow \quad \frac { A B } { D E } = \frac { B C } { D C }{/tex} ...(ii)
From (i) and (ii), we obtain
{tex}\frac { A B + A C } { A C } = \frac { A B } { D E } \Rightarrow D E \times ( A B + A C ) = A B \times A C{/tex}

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App