No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 4 answers

Aman Bhatt 7 years, 2 months ago

Kaise pura nikle gaa answer suru se likh kar batao

A.K. Mahi ? 7 years, 2 months ago

Ar(PST) : Ar(PRQ) = 9 : 49.

Aman Bhatt 7 years, 2 months ago

Koi answer batao

Aman Bhatt 7 years, 2 months ago

Ek triangle bana hai isme pqr aur usi triangle st|| qr
  • 5 answers

Kanika Jain 7 years, 2 months ago

No

A.K. Mahi ? 7 years, 2 months ago

No, 1 is not a prime no. because if we divide 1 in any number it will give same answer. So,1 is not a prime number.

Priyadarshi Abhishek 7 years, 2 months ago

Yes 1is a prime no.

Vanshika Nagrey 7 years, 2 months ago

No 1 is not a prime number

Vipul Kumar 7 years, 2 months ago

Yes
  • 2 answers

Isha Yadav 7 years, 2 months ago

L.H.S=R.H.S(hence proved)

Satyam Atreja 7 years, 2 months ago

Hence proved
  • 1 answers

Ashish Rajput 7 years, 2 months ago

1 + cos theta by sin theta
  • 1 answers

Saurabh Singh Harariya 7 years, 2 months ago

You are giving borld exam
  • 2 answers

Ankit Yadav 7 years, 2 months ago

90degree from radius to the point of contact

Vipul Kumar 7 years, 2 months ago

90 degree
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\frac{1}{2a + b + 2x}{/tex} = {tex}\frac{1}{2a}{/tex} + {tex}\frac{1}{b}{/tex} + {tex}\frac{1}{2x}{/tex} 

{tex}\Rightarrow{/tex} {tex}\frac{1}{2a + b + 2x}{/tex} - {tex}\frac{1}{2x}{/tex} = {tex}\frac{1}{2a}{/tex} + {tex}\frac{1}{b}{/tex} 
{tex}\Rightarrow{/tex}{tex}\frac { 2 x - 2 a - b - 2 x } { ( 2 a + b + 2 x ) ( 2 x ) }{/tex} = {tex}\frac{b + 2a}{2a \times b}{/tex} 

{tex}\Rightarrow{/tex} {tex}\frac { - ( 2 a + b ) } { ( 2 a + b + 2 x ) 2 x }{/tex} = {tex}\frac{b + 2a}{2ab}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { - 1 } { 4 a x + 2 b x + 4 x ^ { 2 } }{/tex} = {tex}\frac{1}{2ab}{/tex} 

{tex}\Rightarrow{/tex} {tex}4x^2 + 2bx + 4ax  = -2ab{/tex}
{tex}\Rightarrow{/tex} {tex}4x^2 + 2bx + 4ax + 2ab = 0{/tex} 

{tex}\Rightarrow{/tex} {tex}2x(2x + b) + 2a(2x + b) = 0{/tex}
{tex}\Rightarrow{/tex} (2x + b)(2x  + 2a) = 0

{tex}\Rightarrow{/tex} x = -{tex}\frac{b}{2}{/tex} or x = -a

  • 0 answers
  • 1 answers

Rupal ???? 7 years, 2 months ago

Area of segment = Area of sector - Area of triangle Area of triangle = 1/2 r^2 sin theta
  • 0 answers
  • 2 answers

Ramanpreet Singh 7 years, 2 months ago

127

Aditya Patil 7 years, 2 months ago

105,112,119,....... 996 a=105 d=7 an=196 996=105(n_1)×7 N=128
  • 4 answers

Mohit Kashyap 7 years, 2 months ago

Yes , optional questions are important ?‍??‍?

Dhruv Pawar 7 years, 2 months ago

Optional questions never comes in mathematics

Aastha Sekhri 7 years, 2 months ago

Anything can come just do your best preparartion ...✌✌

Vipul Kumar 7 years, 2 months ago

No
  • 2 answers

Isha Yadav 7 years, 2 months ago

It is wrong question

Dhruv Pawar 7 years, 2 months ago

It's wrong question
  • 2 answers

Kunal J 7 years, 2 months ago

It will cost Rs 19193.6 after 20% discount

Pooja Yadav 7 years, 2 months ago

23992
  • 2 answers

Sia ? 6 years, 6 months ago

We can write the given system of  equations  as
ax + by - a2 = 0........(1)
bx + ay - b2 = 0........(2)
From equation (1) & (2), we have
a1 = a, b1 = b, c1 = -a2
a2 = b, b2 = a, and c2 = -b2
Therefore, by cross-multiplication, we get
{tex}\Rightarrow \frac{x}{{b \times ( - {b^2}) - ( - {a^2}) \times a}}{/tex}{tex} = \frac{{ - y}}{{a \times ( - {b^2}) - ( - {a^2}) \times b}}{/tex}{tex}= \frac{1}{{a \times a - b \times b}}{/tex}
{tex}\Rightarrow \frac{x}{{ - {b^3} + {a^3}}} = \frac{{ - y}}{{ - a{b^2} + {a^2}b}} = \frac{1}{{{a^2} - {b^2}}}{/tex}
Now,
{tex}\frac{x}{{ - {b^3} + {a^3}}} = \frac{1}{{{a^2} - {b^2}}}{/tex}
{tex}\Rightarrow x = \frac{{{a^3} - {b^3}}}{{{a^2} - {b^2}}}{/tex}
{tex} = \frac{{(a - b)\left( {{a^2} + ab + {b^2}} \right)}}{{(a - b)(a + b)}}{/tex}
{tex} = \frac{{{a^2} + ab + {b^2}}}{{a + b}}{/tex}
also
{tex}\frac{{ - y}}{{ - a{b^2} + {a^2}b}} = \frac{1}{{{a^2} - {b^2}}}{/tex}
{tex}\Rightarrow - y = \frac{{{a^2}b - a{b^2}}}{{{a^2} - {b^2}}}{/tex}
{tex}\Rightarrow y = \frac{{a{b^2} - {a^2}b}}{{{a^2} - {b^2}}}{/tex}
{tex} = \frac{{ab(b - a)}}{{(a - b)(a + b)}}{/tex}
{tex} = \frac{{ - ab(a - b)}}{{(a - b)(a + b)}}{/tex}
{tex} = \frac{{ - ab}}{{a + b}}{/tex}
Therefore, {tex}x = \frac{{{a^2} + ab + {b^2}}}{{a + b}},\;y = \frac{{ - ab}}{{a + b}}{/tex} is the solution of the given system of the equations.

Shikhar Engineer Bhai 5 years, 7 months ago

bilkul sahi answer hai
  • 1 answers

Saif Ansari 7 years, 2 months ago

a6=0 to prove=a31=5(a11) proof=a31=a +30d a11=a +10d a+30d=5(a+10d)=a+30d=5a+50d 4a+20d=0 i.e a+5d=0 we have a6=0 a+5d=0
  • 1 answers

Ayush Kashyap 7 years, 2 months ago

2+2x2+2x2=20
  • 2 answers

Divyanshu Kumar 7 years, 2 months ago

(x+2x)square =85 ×square+4xsquare=85 ×square+4xsquare-85=0 Now solve it by splitting method and you will get 2 value of x then put these values in the given consecitive no.and you will get the two Consecutive no.s .Thanks

Yo Yo Honey 7 years, 2 months ago

2square+9square
  • 2 answers

Panchal Manthan 7 years, 2 months ago

K=6

Dhruv Saini 7 years, 2 months ago

The value of K =6
  • 2 answers

Panchal Manthan 7 years, 2 months ago

If two zeroes are given than we can find the sum of zeroes and the product of zeroes after that we can put the values of sum and product of zeroes in Quadratic formula.

Vaishnavi Bhangale 7 years, 2 months ago

By help of -b/a and c/a formula
  • 1 answers

Sia ? 6 years, 6 months ago


Given A circle with centre O and an external point T and two tangents TP and TQ to the circle, where P, Q are the points of contact.
To Prove: {tex}\angle{/tex}PTQ = 2{tex}\angle{/tex}OPQ
Proof: Let {tex}\angle{/tex}PTQ = {tex}\theta{/tex}
Since TP, TQ are tangents drawn from point T to the circle.
TP = TQ
{tex}\therefore{/tex} TPQ is an isoscles triangle
{tex}\therefore{/tex} {tex}\angle{/tex}TPQ = {tex}\angle{/tex}TQP = {tex}\frac12{/tex} (180o - {tex}\theta{/tex}) = 90o - {tex}\fracθ2{/tex}
Since, TP is a tangent to the circle at point of contact P
{tex}\therefore{/tex} {tex}\angle{/tex}OPT = 90o
{tex}\therefore{/tex} {tex}\angle{/tex}OPQ = {tex}\angle{/tex}OPT - {tex}\angle{/tex}TPQ = 90o - (90o{tex}\frac12{/tex} {tex}\theta{/tex}) = {tex}\fracθ2{/tex}= {tex}\frac12{/tex}{tex}\angle{/tex}PTQ
Thus, {tex}\angle{/tex}PTQ = 2{tex}\angle{/tex}OPQ

  • 1 answers

Sia ? 6 years, 6 months ago

Check Sample Papers here :  <a href="https://mycbseguide.com/cbse-sample-papers.html">https://mycbseguide.com/cbse-sample-papers.html</a>

  • 1 answers

Yogita Ingle 7 years, 2 months ago

cos30 = 1/2
cos 45 = 1/ √2
cos 60  =  √3/2

  • 6 answers

Anushka Biswas 7 years, 2 months ago

By the way rational no.is which is in the form of p/q.

Anushka Biswas 7 years, 2 months ago

What do you mean by rayional?

Aastha Sekhri 7 years, 2 months ago

Rational numbers are the numbers that can be written in the form of p/q

Yogita Ingle 7 years, 2 months ago

A Rational Number of the form  p/q  or a number which can be expressed in the form of  p/q , where p and q are integers and q ≠ zero, is called a Rational - Number.
Example : 2 / 3 , -5 / 7, -10 / -3 are Rational Number.

Shaheen Hussain 7 years, 2 months ago

Rational ya rayional no.

Bharat Chouhan 7 years, 2 months ago

I dont know
  • 1 answers

Sia ? 6 years, 6 months ago

(-5, 7), (-1, 3)
Required distance
{tex}= \sqrt {([- 1 - {{(-5)}^2]} + {{(3- 7)}^2}}{/tex}
{tex}= \sqrt {16 + 16} = \sqrt {32}{/tex}
{tex}= 4\sqrt 2{/tex}

  • 2 answers

Yogita Ingle 7 years, 2 months ago

The factors of 196 are: 1, 2, 4, 7, 14, 28, 49, 98, 196
The factors of 398220 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 6637, 13274, 19911, 26548, 33185, 39822, 66370, 79644, 99555, 132740, 199110, 398220
Then the highest common factor is 4.

Amarjot Singh 7 years, 2 months ago

Answer

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App