No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Amira Roy❤❤ 7 years, 1 month ago

I hope it's help you

? ❣️ 7 years, 1 month ago

1/2(base1 +base2)height

Amira Roy❤❤ 7 years, 1 month ago

A = {(a + b)÷2}×h A=area of trapezium a=base b=base h=height
  • 1 answers

Sia ? 6 years, 6 months ago

Check NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 2 answers

Pallavi Balotiya 7 years, 1 month ago

Theta/360 × πr^2

Feba Roji 7 years, 1 month ago

{π¤\360 - sin[¤\2]cos[¤\2]}r²
  • 4 answers

Aashu Kumar 7 years, 1 month ago

2x+6x+4 =8x=-4 =x=-4/8 =x=-1/2

Ankeet Pandey 7 years, 1 month ago

=>8x+4=0 =>8x=0-4 =>x=4/8 Therefor x=-1/2

Yuvraj Singh 7 years, 1 month ago

X=-1/2

Rohit Raj 7 years, 1 month ago

8x+4

  • 3 answers

Rupam Mandal 7 years, 1 month ago

12

Ankeet Pandey 7 years, 1 month ago

X= 79 [approx]

Abhishek Kumar 7 years, 1 month ago

12
  • 5 answers

Feba Roji 7 years, 1 month ago

9126

Aashu Kumar 7 years, 1 month ago

9126 will be the answer

Ankeet Pandey 7 years, 1 month ago

9,126

Mayank Gupta 7 years, 1 month ago

9126

Gunjan Bhojwani 7 years, 1 month ago

9,126
  • 1 answers

Sia ? 6 years, 4 months ago

We have,
{tex}\mathrm { LHS } = \frac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \tan \theta + \sec \theta ) - 1 } { ( \tan \theta - \sec \theta ) + 1 }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \sec \theta + \tan \theta ) - \left( \sec ^ { 2 } \theta - \tan ^ { 2 } \theta \right) } { \tan \theta - \sec \theta + 1 }{/tex} [{tex}\because{/tex} sec2{tex}\theta{/tex} - tan2{tex}\theta{/tex} = 1]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \sec \theta + \tan \theta ) - ( \sec \theta + \tan \theta ) ( \sec \theta - \tan \theta ) } { \tan \theta - \sec \theta + 1 }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { ( \sec \theta + \tan \theta ) [ 1 - ( \sec \theta - \tan \theta ) ] } { \tan \theta - \sec \theta + 1 }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \sec \theta + \tan \theta ) ( 1 - \sec \theta + \tan \theta ) } { ( \tan \theta - \sec \theta + 1 ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \sec \theta + \tan \theta ) ( \tan \theta - \sec \theta + 1 ) } { ( \tan \theta - \sec \theta + 1 ) }{/tex}
{tex}\Rightarrow \quad L H S = \sec \theta + \tan \theta = \frac { 1 } { \cos \theta } + \frac { \sin \theta } { \cos \theta } = \frac { 1 + \sin \theta } { \cos \theta }{/tex} = RHS

  • 0 answers
  • 1 answers

Kunal J 7 years, 1 month ago

‛a' will the distance between the tow points
  • 2 answers

Rishika Purviya 7 years, 1 month ago

13.75

Lorial Brail 7 years, 1 month ago

I think but don't sure 6+9÷3×5-8+3÷4 =6+3×5-8+0.75 =6+15-8+0.75 =21-0.67 =0.46
  • 2 answers

Aashu Kumar 7 years, 1 month ago

In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse is equal to the sum of the squares of the other two sides.☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️?

Angle Anu? 7 years, 1 month ago

Let ABC be a right angled triangle AC be the hypotenuse AC2=AB2+BC2
  • 1 answers

Yogita Ingle 7 years, 1 month ago

x2 + 8x + 15 = 0
x2 + 5x + 3x + 15 = 0
x(x + 5) + 3(x + 5) = 0
(x+ 5) (x + 3) = 0
x + 5 = 0, x+ 3 = 0
x = -5 or x = -3

  • 2 answers

Deepak Kumar 7 years, 1 month ago

Please give your no.

Naina Gupta 7 years, 1 month ago

Please answer quickly and with every step so that i can understand
  • 1 answers

Sia ? 6 years, 6 months ago

The volume of a cuboid is given by the formula V = lwh,
and the surface area of a cuboid is given by the formula
SA = 2lh + 2wh + 2lw where l = length, w = width, and h = height.

  • 1 answers

A.K. Mahi ? 7 years, 1 month ago

Distance formula is used to find the distance between two given points on graph. The exact formula used for finding distance between coordinates of two points is :-√(X2-X1)² + (Y2-Y1)².
  • 3 answers

Bhavna Jaat 7 years, 1 month ago

-X

Dipanshu Kumar 7 years, 1 month ago

-x. You dont know

Shrey Rastogi 7 years, 1 month ago

-x
  • 1 answers

Sia ? 6 years, 6 months ago

Let AB be the mountain of height h kilometres. Let C be a point at a distance of x km. from the base of the mountain such that the angle of elevation of the top at C is 30o. Let D be a point at a distance of 10 km from C such that the angle of elevation at D is of 15o.

In {tex}\triangle C A B,{/tex} we have
{tex}\tan 30 ^ { \circ } = \frac { A B } { A C }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { \sqrt { 3 } } = \frac { h } { x }{/tex}
{tex}\Rightarrow \quad x = \sqrt { 3 } h{/tex}  ...(i)
In {tex}\triangle D A B,{/tex} we have
{tex}\tan 15 ^ { \circ } = \frac { A B } { A D }{/tex}
{tex}\Rightarrow \quad 0.27 = \frac { h } { x + 10 }{/tex}
{tex}\Rightarrow{/tex} (0.27) (x +1) = h  ...(ii)
Substituting x = {tex}\sqrt { 3 }{/tex}h obtained from equation (i) in equation (ii), we get
{tex}0.27 ( \sqrt { 3 } h + 10 ) = h{/tex}
{tex}\Rightarrow \quad 0.27 \times 10 = h - 0.27 \times \sqrt { 3 } h{/tex}
{tex}\Rightarrow \quad h ( 1 - 0.27 \times \sqrt { 3 } ) = 2.7{/tex}
{tex}\Rightarrow{/tex} h (1 - 0.46) = 2.7
{tex}\Rightarrow \quad h = \frac { 2.7 } { 0.54 } = 5{/tex}
Hence, the height of the mountain is 5 km.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App