No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

Check NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 3 answers

Anjali Kumari??? 7 years, 1 month ago

(X+2root3) (x+root3)=0 X= -2root3 , x= -root3

Trisha Bhardwaj 7 years, 1 month ago

Use quadratic formula First find D D=b^2-4ac (3√3)^2 -4×1×6 27-24 =3 Now apply value of D in quadratic formula (-3√3)^2+-√3÷2 27+-√3÷2 Hence roots are 27+√3÷2 and 27-√3÷2

Deepesh Patel 7 years, 1 month ago

W
  • 0 answers
  • 3 answers

Payal Jena 7 years, 1 month ago

LHS =sin theta (1+sin theta /cos theta) +cos theta (1+cos theta /sin theta) =sin theta /cos theta (sin theta +cos theta) +cos theta /sin theta (sin theta +costheta) =( sin theta +costheta) (sin theta /cos theta +cos theta /sin theta) =sin theta +costheta /sin theta *costheta) =1/cos theta +1/sin theta =sec theta+cosec theta=RHS(proved) Hope this will help you ☺️

Avika Chaudhary 7 years, 1 month ago

Brain is the part of our body inside our head that controls our thoughts feelings and movements.???

Sohail Khan 7 years, 1 month ago

What is brain
  • 3 answers

Chesta Pawan Manchanda 7 years, 1 month ago

Where is the b

Ayush Maurya 7 years, 1 month ago

In this question there is no 'b'. So, according to the question 'a' is -1

Deepak Baranwal 7 years, 1 month ago

kutta kamina lathakhor
  • 3 answers

Panchal Manthan 7 years, 1 month ago

Original name

Rajeev Kumar Choudhary 7 years, 1 month ago

A main name who describe himself or herself.☺️☺️☺️☺️☺️☺️

Deepak Baranwal 7 years, 1 month ago

by which a person can describe himself
  • 0 answers
  • 0 answers
  • 1 answers

Praanshu Joshi 7 years, 1 month ago

Let the month had 30 days for which he works . Salary for 1 day=45000/30=1500 That is salary for 8 working hrs is 1500 Salary for 1 hour=1500/8=187.5
  • 1 answers

Praanshu Joshi 7 years, 1 month ago

X=√2 or x=1
  • 1 answers

Kunal J 7 years, 1 month ago

43 - 36√3÷ 11
  • 4 answers

Abhay Sharma 7 years, 1 month ago

First do board exams and then see medical stream.

Abhi H 7 years, 1 month ago

Dont take much stress and sit for studies 24 hrs

Chesta Pawan Manchanda 7 years, 1 month ago

Do hardwork as much as you can do . And be prepare yourself for science stream.and let me tell you one thing ,if you are thinking about science stream so don't change your mind at that time because the same thing has been happened to me.

Harmat Raj Purohit 7 years, 1 month ago

eat your teachers ****
  • 2 answers

Praanshu Joshi 7 years, 1 month ago

Let no. Be 10x+y A.T.Q xy=14 Also 10x+y+45=10y+x Solving these two equations we get x=2;y=7 No. =10x+y=10×2+7=27

Harmat Raj Purohit 7 years, 1 month ago

27 27+45=72
  • 2 answers

Chesta Pawan Manchanda 7 years, 1 month ago

Where is the sum of next four terms

Chesta Pawan Manchanda 7 years, 1 month ago

Your question is incomplete rashid
  • 4 answers

Neha Prajapati 7 years, 1 month ago

If I have take PCB so which Question paper I should choose

Panchal Manthan 7 years, 1 month ago

OH | really. .....................?

Chesta Pawan Manchanda 7 years, 1 month ago

Yes it is true you can opt any one of them but let me tell you one thing always choose tuff question paper that will help in your studies

Apurv Gautam 7 years, 1 month ago

It is true but not for the year 2018 _ 19 . CBSE just planned for it . It is not for our board exams.
  • 1 answers

Subjeet Sahow 7 years, 1 month ago

It means that the quadrilateral is drawen outside the circle such that the boundary of quadrilateral is touch the 4 points of circle
  • 0 answers
  • 4 answers

Praanshu Joshi 7 years, 1 month ago

7/8

Tushar Kumar 7 years, 1 month ago

1/3

Auroshree Mishra 7 years, 1 month ago

P (boy)=1/3

A.K. Mahi ? 7 years, 1 month ago

P(at least one boy) = 7/8.
  • 1 answers

Sia ? 6 years, 6 months ago

Let a and d be the first term and common difference respectively of the given A.P. Then
an = a + (n - 1)d
{tex}\frac { 1 } { n } ={/tex} mth term 
{tex}\Rightarrow \frac { 1 } { n } {/tex}= a + ( m - 1 ) d ...(i)
{tex}\frac { 1 } { m }{/tex}= nth term
{tex}\Rightarrow \frac { 1 } { m } {/tex}= a + ( n - 1 ) d ...(ii)
On subtracting equation (ii) from equation (i), we get
{tex}\frac { 1 } { n } - \frac { 1 } { m } = {/tex} [a+  (m-1) d] -[ a+ (n -1)d]
=  a + md - d - a - nd + d
{tex}= ( m - n ) d{/tex}
{tex} \Rightarrow \frac { m - n } { m n } = ( m - n ) d {/tex}
{tex}\Rightarrow d = \frac { 1 } { m n }{/tex}
Putting d = {tex}\frac { 1 } { m n }{/tex} in equation (i), we get
{tex}\frac { 1 } { n } = a + \frac { ( m - 1 ) } { m n } {/tex}
{tex}\Rightarrow \frac { 1 } { n } = a + \frac { 1 } { n } - \frac { 1 } { m n } {/tex}
{tex}\Rightarrow a = \frac { 1 } { m n }{/tex}
{tex}\therefore{/tex} (mn)th term = a + (mn - 1) d
{tex}\frac { 1 } { m n } + ( m n - 1 ) \frac { 1 } { m n } {/tex}{tex}\left[ \because a = \frac { 1 } { m n } = d \right]{/tex}
= {tex}\frac { 1 } { m n } + \frac { mn } { m n } - \frac { 1 } { m n }{/tex}
= 1

  • 1 answers

Sia ? 6 years, 6 months ago

Given: ABCD is a quadrilateral circumscribing a circle whose centre is O.
To prove:

  1. {tex}\angle{/tex}AOB + {tex}\angle{/tex}COD = 180o
  2. {tex}\angle{/tex}BOC + {tex}\angle{/tex}AOD = 180o

Construction: Join OP, OQ, OR and OS.
 
Proof: Since tangents from an external point to a circle are equal.
{tex}\therefore{/tex} AP = AS,
BP = BQ ........ (i)
CQ = CR
DR = DS
In {tex}\triangle{/tex}OBP and {tex}\triangle{/tex}OBQ,
OP = OQ [Radii of the same circle]
OB = OB [Common]
BP = BQ [From eq. (i)]
{tex}\therefore{/tex} {tex}\triangle{/tex}OPB {tex}\cong{/tex} {tex}\triangle{/tex}OBQ [By SSS congruence criterion]
{tex}\therefore{/tex} {tex}\angle{/tex}1 = {tex}\angle{/tex}2 [By C.P.C.T.]
Similarly, {tex}\angle{/tex}3 = {tex}\angle{/tex}4, {tex}\angle{/tex}5 = {tex}\angle{/tex}6, {tex}\angle{/tex}7 = {tex}\angle{/tex}8
Since, the sum of all the angles round a point is equal to 360o.
{tex}\therefore{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}2 + {tex}\angle{/tex}3 + {tex}\angle{/tex}4+ {tex}\angle{/tex}5 + {tex}\angle{/tex}6 + {tex}\angle{/tex}7 + {tex}\angle{/tex}8 = 360o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}4+ {tex}\angle{/tex}5 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8 + {tex}\angle{/tex}8 = 360o
{tex}\Rightarrow{/tex}  2 ({tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8)  = 360o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}1 + {tex}\angle{/tex}4 + {tex}\angle{/tex}5 + {tex}\angle{/tex}8 = 180o
{tex}\Rightarrow{/tex} ({tex}\angle{/tex}1 + {tex}\angle{/tex}5)  + ({tex}\angle{/tex}4 + {tex}\angle{/tex}8) = 180o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}AOB + {tex}\angle{/tex}COD = 180o
Similarly we can prove that
{tex}\angle{/tex}BOC + {tex}\angle{/tex}AOD = 180o

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App