No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Ananya Sharma 7 years, 1 month ago

Seventh term from the last will be 136

Ananya Sharma 7 years, 1 month ago

7th term of the AP will be 25
  • 2 answers

Hardik Lohan 7 years, 1 month ago

n= 3

A.K. Mahi ? 7 years, 1 month ago

An = n × d.
  • 1 answers

Mohit Kumar 7 years, 1 month ago

Angle of elivation is foot to top of anything like building and tower and deppresion is from tower to foot
  • 1 answers

Aryan Balwantroy 7 years, 1 month ago

I think you want to know the full form of RHS not RSH The full form of RHS is Right Hand Side
  • 1 answers

Mukul Kumar 7 years, 1 month ago

45
  • 1 answers

Harshita Srivastava 7 years, 1 month ago

As in sin and cos angle45°is same.So,value of A will be 1/√2
  • 0 answers
  • 0 answers
  • 1 answers

Aashu Kumar 7 years, 1 month ago

Trigonometry is a branch of mathematics that studies relationships involving lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. This can only be understood by learning and practing......???
  • 2 answers

Satyam Meher 7 years, 1 month ago

It is wrong

Nikhil Singh Pratap 7 years, 1 month ago

By the help of1/3×22/7 ×16 ×13=217.90
  • 1 answers

Sia ? 6 years, 6 months ago

Given : {tex}\triangle \mathrm{ABC}{\sim} \triangle \mathrm{PQR}{/tex} &
ar {tex}\triangle \mathrm{ABC}{/tex} = ar {tex}\Delta \mathrm{PQR}{/tex}
{tex}{/tex}To prove: {tex}\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}{/tex}
Since, {tex}\triangle \mathrm{ABC}{\sim} \Delta \mathrm{PQR}{/tex}
ar {tex}\triangle A B C=\text { ar } \triangle P Q R{/tex} (given)
{tex}\frac{{\Delta ABC}}{{ar\Delta PQR}} = 1{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{{A{B^2}}}{{P{Q^2}}} = \frac{{B{C^2}}}{{Q{R^2}}} = \frac{{C{A^2}}}{{P{R^2}}} = 1{/tex}
[Using Theorem of area of similar Triangles]
{tex}\Rightarrow{/tex} AB = PQ, BC = QR & CA = PR
Thus, {tex}\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

According to the question,
{tex}(x - 5)(x - 6) = \frac{{25}}{{{{\left( {24} \right)}^2}}}{/tex}
{tex}\Rightarrow x(x - 6) - 5(x - 6) = \frac{{25}}{{{{(24)}^2}}}{/tex}
{tex}\Rightarrow {x^2} - 6x - 5x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + \frac{{30 \times {{24}^2} - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{30 \times 576 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{17280 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{264x}}{{24}} + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \left( {\frac{{145}}{{24}} + \frac{{119}}{{24}}} \right)x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{145}}{{24}}x - \frac{{119}}{{24}}x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x\left( {x - \frac{{145}}{{24}}} \right) - \frac{{119}}{{24}}\left( {x - \frac{{145}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow \left( {x - \frac{{145}}{{24}}} \right)\left( {x - \frac{{119}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow x - \frac{{145}}{{24}} = 0{/tex} or {tex}x - \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x = \frac{{145}}{{24}}{/tex} or {tex}x = \frac{{119}}{{24}}{/tex}

  • 0 answers
  • 2 answers

????? ??? 7 years, 1 month ago

In this answer sin i upon m hai sin r

????? ??? 7 years, 1 month ago

The value of the constant sin I upon me sin r for a ray of light passing from air into a particular medium is called the refractive index
  • 1 answers

Abhishek Bhardwaj 7 years, 1 month ago

2.0069
  • 1 answers

Arghyadeep Kolay 7 years, 1 month ago

First draw the base AB=8cm..... Then on the perpendicular bisector of AB, Cut CD=5cm i.e. D is the point at which AB is bisected and D is a point on the perpendicular bisector ...... Join AC and BC
  • 0 answers
  • 1 answers

Kunal J 7 years, 1 month ago

(tanA + cotA)^2 - (tanA - cotA)^2 tan^2 + cotA^2 + 2tanAcotA - (tanA^2 +cotA^2 - 2tanAcotA) tan^2 + cotA^2 + 2 - tanA^2 - cotA^2 +2 = 2+2 = 4 Note tanA × cotA =1 Since tanA = 1/cotA or vice versa
  • 1 answers

Sia ? 6 years, 6 months ago

Check NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 1 answers

Guru Jatt 7 years, 1 month ago

Substitution is a method in which first put out the temporary value of variable then put in equation after this the exact value of variable is comes out then put in another equation.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App