No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Deepanshi ☺☺ 7 years, 1 month ago

Its 2sinA means 2XsinA
  • 2 answers

Prince Pandit 7 years, 1 month ago

45

Shrutie Singh 7 years, 1 month ago

45
  • 1 answers

Ankita Mohanty 7 years, 1 month ago

=(sin theta +cos theta) (sin^2 theta -sin theta. cos theta + cos ^2 theta) /sin theta +cos theta =sin^2theta -sin theta. Cos theta + cos ^2theta
  • 1 answers

Aryan Raj 7 years, 1 month ago

Ncert book
  • 2 answers

Hamza Hasan 7 years, 1 month ago

The sum is 15

Aryan Raj 7 years, 1 month ago

3,5,7
  • 1 answers

Hamza Hasan 7 years, 1 month ago

Answer is 0
  • 1 answers

Sia ? 6 years, 6 months ago

Let APB be the tangent and take O as centre of the circle.

Let us suppose that MP{tex}\bot{/tex}AB does not pass through the centre.
Then,
{tex}\angle OPA = 90^\circ{/tex} [{tex}\because{/tex} Tangent is perpendicular to the radius of circle]
But {tex}\angle MPA = 90^\circ{/tex} [Given]
{tex}\therefore \angle OPA = \angle MPA{/tex}
This is only possible when point O and point M coincide with each other.
Hence, the perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.

  • 2 answers

Ayush Kamal Kaushik 7 years, 1 month ago

Given that 2sin A=1 sinA =1/2 sin A=sin30 A=30

Shakti Singh Bhati 5 years, 8 months ago

2sinA =1 sinA =1/2 sinA = sin30 A = 30
  • 1 answers

Hemant Kumar 7 years, 1 month ago

Let p (x)= x^2 + ax - b =0 Now, a+b= - a/1 And a.b=-b/1 =~ a = -b / b =~a=-1 So... -1 +b = -(-1) b= 1+1 =2
  • 0 answers
  • 3 answers

Hamza Hasan 7 years, 1 month ago

-2/5

Chesta Pawan Manchanda 7 years, 1 month ago

X=-2√3/5

Saket Choubey 7 years, 1 month ago

9548aba
  • 1 answers

Yogita Ingle 7 years, 1 month ago

90 = 2 x 3 x 3 x 5 = 2 x 32 x 5
144 = 2 x 2 x 2 x 2 x 3 x 3 = 24 x 32
HCF (90, 144) = 2 x 32 = 18

  • 1 answers

Sia ? 6 years, 6 months ago

Total surface area of toy = C.S.A of hemisphere + C.S.A. of a cone
{tex} = 2\pi {r^2} + \pi rl{/tex}
Here, r = 7cm, h = 24 cm
{tex}\therefore l = \sqrt {{r^2} + {h^2}} = \sqrt {{7^2} + {{24}^2}} = 25cm{/tex}
T.S.A. of toy {tex} = 2 \times \frac{{22}}{7} \times 7 \times 7 + \frac{{22}}{7} \times 7 \times 25{/tex}
= 308 + 550 = 858 cm2

  • 1 answers

Shashwat Majge 7 years, 1 month ago

U can find it by using this formula: cos(A−B)=cos(A)cos(B)+sin(A)sin(B)
[Divide cos15 as cos[45-30]]
  • 1 answers

Abhijit Kshatri 7 years, 1 month ago

35/6×50/7+11/2 1750/42+11/2 Take LCM of 42 and 2 We get 42 So 1750+231 ____________ 42 =1981/42 =283/6
  • 2 answers

Sunil Hanotiya 7 years, 1 month ago

2πrh

Sarath Sarath 7 years, 1 month ago

2 pie r.h
  • 1 answers

Sia ? 6 years, 6 months ago

Check NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 1 answers

Sia ? 6 years, 6 months ago


Let a line AB have two mid-points, say, C and D. Then
AB = AC + CB = 2AC . . . . (i) . . . [As C is the mid-point of AB]
and AB = AD + DB = 2AD . . . . (ii) [As D is the mid-point of AB]
From equation (i) and (ii)
AC = AD and CB = DB
But this will possible only when D lies on point C. So every line segment has one and only one mid-point.

  • 2 answers

Kunal J 7 years, 1 month ago

Given: sintheta = cos(theta-6) Now sintheta = cos(90- theta) So, cos(90- theta) = cos(theta-6) So, 90 - theta = theta-6 90 + 6 = theta + theta 96 = 2theta 96/2 = theta 48 = theta.

Sreya Sreenivasan 7 years, 1 month ago

Sin theta=sin 6 Theta=6
  • 1 answers

Sia ? 6 years, 6 months ago

Given Height of the bucket (h) = 15 cm
r = 14 cm
R = ?
Now,
Volume of the bucket {tex}= \pi \times \frac { 1 } { 3 } \times \left( r ^ { 2 } + R ^ { 2 } + r R \right) \times h{/tex}
{tex}\Rightarrow 5390 = \frac { 22 } { 7 } \times \frac { 1 } { 3 } \times \left( 14 ^ { 2 } + R ^ { 2 } + 14 R \right) \times 15{/tex}
{tex}\Rightarrow 5390 = \frac { 110 } { 7 } \times \left( 196 + \mathrm { R } ^ { 2 } + 14 \mathrm { R } \right){/tex}
{tex}\Rightarrow \frac { 539 \times 7 } { 11 } = 196 + R ^ { 2 } + 14 R{/tex}
{tex}\Rightarrow{/tex} 343 = 196 + R2 + 14R
{tex}\Rightarrow{/tex} R2 + 14R = 147
{tex}\Rightarrow{/tex} R2 + 14R = 147 = 0
{tex}\Rightarrow{/tex} R2+ 21R - 7R -147 =0
{tex}\Rightarrow{/tex} R(R + 21) -7(R + 21) = 0
{tex}\Rightarrow{/tex} (R - 7)(R + 21) = 0
{tex}\Rightarrow{/tex} R = -21 or R = 7
{tex}\Rightarrow{/tex} R = 7 cm. ({tex}\because{/tex} R cannot be negative)

  • 2 answers

Saurav Kumar 7 years, 1 month ago

Then how x < -a ?

Kunal J 7 years, 1 month ago

Since x^2 - a^2 > 0 So, x^2 > a^2 So, this implies x > a.
  • 3 answers

Arohi . 7 years, 1 month ago

Sorry I have wrote it in different lines but it came together.try to understand it.

Arohi . 7 years, 1 month ago

x^2+5x+x+5, =x(x+5)+1(x+5), =(x+5)(x+1), x=-5, x=-1 Might help you:0

Neeli Neeli Nasir 7 years, 1 month ago

Factorization mefhod
  • 1 answers

Vipul Sharma 7 years, 1 month ago

1
  • 1 answers

Sia ? 6 years, 6 months ago


{tex}\angle OCD = 90^\circ{/tex} (tangent and radii are {tex}\bot {/tex} to one another at the point of contact)
In {tex}\triangle{/tex}OCA,
OC = OA (radii of circle)
Hence, {tex}\angle OCA = \angle OAC{/tex} (angles opposite to equal sides are equal)
Also, {tex}\angle OCD = \angle OCA + \angle ACD{/tex}
{tex}90^\circ = \angle OAC + \angle ACD{/tex} {tex}\left( {\because \angle OCA = \angle OAC} \right){/tex}
{tex}90^\circ = \angle BAC + \angle ACD{/tex}
Hence, {tex}\angle BAC + \angle ACD = 90^\circ{/tex}
Hence proved.

  • 1 answers

Sia ? 6 years, 6 months ago

Check syllabus here : <a href="https://mycbseguide.com/cbse-syllabus.html">https://mycbseguide.com/cbse-syllabus.html</a>

  • 1 answers

Chesta Pawan Manchanda 7 years, 1 month ago

What is the question ? What we have to prove?

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App