No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Omprakash Bishnoi 7 years, 1 month ago

ek app h download karle sare h usme

Ashish Roy 7 years, 1 month ago

Lol pagal h be.... Sara formula yha kaise aayega

Jitendra Choudhary 7 years, 1 month ago

Formula
  • 0 answers
  • 4 answers

Anson Simon 7 years, 1 month ago

X=2

Anurag Maurya 7 years, 1 month ago

,????

Garima Demla 7 years, 1 month ago

yupp...I used distance formulaa and mine was also 2. But my teacher said that Ans. will be 0 because we've to use Mid point formula here....But I still have a doubt.......2 or 0???⁉??

Deepak Bansal 7 years, 1 month ago

X =2
  • 1 answers

Yogita Ingle 7 years, 1 month ago

let √5 be rational
then it must in the form of p/q [q is not equal to 0][p and q are co-prime]
√5=p/q
⇒ √5 × q = p
squaring on both sides
⇒ 5× q× q = p× p  ------> 1
p×p is divisible by 5
p is divisible by 5
p = 5c  [c is a positive integer] [squaring on both sides ]
p× p = 25× c× c  --------- > 2
sub p× p in 1
5× q× q = 25× c× c
q× q = 5× c× c
⇒ q is divisble by 5
thus q and p have a common factor 5
there is a contradiction
as our assumsion p &q are co prime but it has a common factor
so √5 is an irrational

  • 1 answers

Ankit Yadav 7 years, 1 month ago

approx 86.956
  • 1 answers

Abhinav Verma 7 years, 1 month ago

Given that: a=3 d=5 l=253 Now, A20=l-(n-1)d =253-(20-1)×5 =253-95 =158 So 20th term of AP is 158.
  • 1 answers

Aditi Choudhary 7 years, 1 month ago

Kiska
  • 1 answers

Devanshi Grover 7 years, 1 month ago

What questions?????????????
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago


We have,
 {tex}cosec \;A = \frac { \text { Hypotenuse } } { \text { Perpendicular } } = \frac { \sqrt { 10 } } { 1 }{/tex}
So, we draw a right triangle ABC, right-angled at B such that
Perpendicular = BC = 1 unit and, Hypotenuse{tex}= A C = \sqrt { 10 }{/tex}.
By Pythagoras theorem, we have
{tex}A C ^ { 2 } = A B ^ { 2 } + B C ^ { 2 }{/tex}
{tex}\Rightarrow \quad ( \sqrt { 10 } ) ^ { 2 } = A B ^ { 2 } + 1 ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = 10 - 1 = 9{/tex}
{tex}\Rightarrow \quad A B = \sqrt { 9 } = 3{/tex}
When we consider the trigonometric ratios of {tex}\angle A{/tex}, we have
Base = AB = 3 units, Perpendicular = BC = 1 units and, Hypotenuse{tex}= A C = \sqrt { 10 }{/tex} units
{tex}\therefore \quad \sin A = \frac { \text { Perpendicular } } { \text { Hypotenuse } } = \frac { 1 } { \sqrt { 10 } } , \cos A = \frac { \text { Base } } { \text { Hypotenuse } } = \frac { 3 } { \sqrt { 10 } }{/tex}
 {tex}\tan A = \frac { \text { Perpendicular } } { \text { Base } } = \frac { 1 } { 3 } , \quad \sec A = \frac { \text { Hypotenuse } } { \text { Base } } = \frac { \sqrt { 10 } } { 3 }{/tex}.
and, {tex}\cot A = \frac { \text { Base } } { \text { Perpendicular } } = \frac { 3 } { 1 } = 3{/tex}

  • 0 answers
  • 2 answers

Vivek Singh 7 years, 1 month ago

Any one

Vivek Singh 7 years, 1 month ago

Short
  • 1 answers

Sia ? 6 years, 6 months ago

Let {tex} \alpha{/tex} and {tex} \frac { 1 } { \alpha }{/tex} be the zeros of (a+ 9)x+ 13x + 6a.
Then, we have
{tex} \alpha \times \frac { 1 } { \alpha } = \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ 1 = {tex} \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ a2 + 9 = 6a
⇒ a2 - 6a + 9 = 0
⇒ a2 - 3a - 3a + 9 = 0
⇒ a(a - 3)  - 3(a - 3) = 0
⇒ (a - 3) (a - 3) = 0
⇒ (a - 3)= 0
⇒ a - 3 = 0
⇒ a = 3
So, the value of a in given polynomial is 3.

  • 2 answers

Mitali Sabale 7 years, 1 month ago

Trigonometric ratios

Satwik Megeri 7 years, 1 month ago

Theorems
  • 1 answers

Poonam Jyoti 7 years, 1 month ago

Ncert book
  • 3 answers

Guru Patel 7 years, 1 month ago

R=2 2q=2 is even no. 2q+1=3 is odd no. 2q+2 =4 is even no.

Guru Patel 7 years, 1 month ago

R=2 2q=2 is even no.

Abhishek Kumar 5 years, 8 months ago

Dhbuzwyv3
  • 2 answers

Vinutha Lohithesh 7 years, 1 month ago

(secQ+tanQ)(tanQ-secQ) -Sec²Q+secQtanQ-secQtanQ+tan²Q =Tan²Q-sec²Q=1

Vinutha Lohithesh 7 years, 1 month ago

The question is not correct It is secQ+tanQ=m and secQ-tanQ=n
  • 2 answers

Omprakash Bishnoi 7 years, 1 month ago

the circles which drawn from same centre

Purvanshi Yadav 7 years, 1 month ago

Circles with same centre
  • 3 answers

Garima Demla 7 years, 1 month ago

So...if we are given a question in which we have a table with wages like less than 10 ,less than 20 ,less than 30 ,less than 40 ,less than 50,and less than 60 with their respective no. of students like 2 ,11,25,45,57,75.....so here what is the modal class ..."75" or "less than 60"???

Guru Patel 7 years, 1 month ago

Modal is highest no. Of frequency

Bhavay Khanna 7 years, 1 month ago

Mode
  • 2 answers

Omprakash Bishnoi 7 years, 1 month ago

angles of equilateral triangle are equal than ABC~PQR by sss rule

Pragati ... 7 years, 1 month ago

Equilateral triangles have equal sides so that all angles are equal let one triangle is ABC And another is PQR <A =<P <B=<Q <C=<R By AAA criterian similarity Triangle ABC~triangle PQR Hence Proved
  • 1 answers

Sia ? 6 years, 6 months ago

Let AB = x, BC = x

Area of an equilateral triangle of side a = {tex}\frac { \sqrt { 3 } } { 4 }{/tex}a2
Area of {tex}\triangle{/tex}BCD = {tex}\frac { \sqrt { 3 } } { 4 }{/tex}x2 ..(i)
Now side AC = {tex}\sqrt { x ^ { 2 } + x ^ { 2 } } = \sqrt { 2 x ^ { 2 } } = x \sqrt { 2 }{/tex} (by pythagoras theorem)
Area of {tex}\triangle{/tex}ACE = {tex}\frac { \sqrt { 3 } } { 4 } ( \sqrt { 2 } x ) ^ { 2 }{/tex} = 2
{tex}\frac { \sqrt { 3 } } { 4 }{/tex}x2 = 2. Area of BCD [from (i)]
{tex}\therefore{/tex} ar{tex}\triangle{/tex}BCD = {tex}\frac{1}{2}{/tex}area of {tex}\triangle{/tex}ACE.

  • 2 answers

Samridhi Yadav 7 years, 1 month ago

Incomplete question

Äãßhù @@Sswäg 7 years, 1 month ago

Plz complete the question .......
  • 4 answers

Omprakash Bishnoi 7 years, 1 month ago

i think level ka hi hoga

Rohit Sahani 7 years, 1 month ago

Ofcorse difficult hoga lekin padhne walo ke liye nahi

Mahaveer Topannavar 7 years, 1 month ago

Easy

Äãßhù @@Sswäg 7 years, 1 month ago

May be difficult because of leak of paper last year .............

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App