No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

  1. r = 10 cm, {tex}\theta = 90 ^ { \circ }{/tex}
    Area of minor sector = {tex}\frac { \theta } { 360 } \times \pi r ^ { 2 }{/tex}
    {tex}= \frac { 90 } { 360 } \times 3.14 \times 10 \times 10 = 78.5 \mathrm { cm } ^ { 2 }{/tex}
    Area of {tex}\triangle O A B = \frac { O A \times O B } { 2 }{/tex}
    {tex}= \frac { 10 \times 10 } { 2 } = 50 \mathrm { cm } ^ { 2 }{/tex}
    {tex}\therefore {/tex} Area of the minor segment
    = Area of minor sector - Area of {tex}\triangle O A B{/tex}
    {tex}= 78.5 \mathrm { cm } ^ { 2 } - 50 \mathrm { cm } ^ { 2 } = 28.5 \mathrm { cm } ^ { 2 }{/tex}
  2. Area of major sector = {tex}\pi x ^ { 2 } - 78.5{/tex}
    {tex}= 3.14 \times 10 \times 10 - 78.5{/tex}
    {tex}= 314 - 78.5 = 235.5 \mathrm { cm } ^ { 2 }{/tex}
    Alternative method
    Area of major sector = {tex}\frac { 360 - \theta } { 360 } \times \pi r ^ { 2 }{/tex}
    {tex}= \frac { 360 - 90 } { 360 } \times 3.14 \times ( 10 ) ^ { 2 } = 235.5 \mathrm { cm } ^ { 2 }{/tex}
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}sec\ \theta+ tan\ \theta  = p{/tex} ...(i)
Also {tex}sec^2 \theta  - tan^2 \theta  = 1{/tex}
{tex}\Rightarrow{/tex} (sec {tex}\theta{/tex} - tan {tex}\theta{/tex}) (sec {tex}\theta{/tex} + tan {tex}\theta{/tex}) = 1
{tex}\Rightarrow{/tex} p(sec {tex}\theta{/tex} - tan {tex}\theta{/tex}) = 1
[using equation (i)]
{tex}\Rightarrow{/tex} sec {tex}\theta{/tex} - tan {tex}\theta{/tex} {tex}=\frac{1}{p}{/tex} ...(ii)
(ii) - (i) we get
{tex}-2 tan{/tex} {tex}\theta{/tex} {tex}=\frac{1-p^{2}}{p}{/tex}
{tex}\Rightarrow{/tex}- tan {tex}\theta{/tex} {tex}=\frac{1-p^{2}}{2 p}{/tex}
{tex}\Rightarrow{/tex}- cot {tex}\theta{/tex} {tex}=\frac{2 p}{1-p^{2}}{/tex}
cot {tex}\theta{/tex} {tex}=\left(\frac{2 p}{1-p^{2}}\right)^{2}{/tex}
{tex}=\frac{-4 p^{2}}{\left(1-p^{2}\right)^{2}}{/tex}
{tex}\Rightarrow{/tex} {tex}cosec^2{/tex} {tex}\theta{/tex} - 1 {tex}=\frac{-4 p^{2}}{\left(1-p^{2}\right)^{2}}{/tex}
{tex}\Rightarrow{/tex} {tex}cosec^2{/tex} {tex}\theta{/tex} {tex}=\frac{-4 p^{2}}{\left(1-p^{2}\right)^{2}}+1=\frac{-4 p^{2}+\left(1-p^{2}\right)^{2}}{\left(1-p^{2}\right)^{2}}{/tex}
{tex}cosec^2{/tex} {tex}\theta{/tex} {tex}=\frac{-4 p^{2}+1+p^{4}-2 p^{2}}{\left(1-p^{2}\right)^{2}}{/tex}
{tex}=\frac{\left(1+p^{2}\right)^{2}}{\left(1-p^{2}\right)^{2}}{/tex}
{tex}\Rightarrow{/tex} {tex}cosec\ \theta{/tex} {tex}=\frac{1+p^{2}}{1-p^{2}}{/tex}

  • 4 answers

Rishabh Jain 6 years, 11 months ago

Welcome sis

Aradhana Singh 6 years, 11 months ago

Thanks bhai to good

Rishabh Jain 6 years, 11 months ago

K = 9.

Aradhana Singh 6 years, 11 months ago

For what value of k is the infinite solution of following equation body ? 2x + 3y- 5 = 0, 6x + Ky - 15 =0
  • 1 answers

Aradhana Singh 6 years, 11 months ago

Graph 6marks , vividh prasnmala 10marks ,real number 8marks ,mean , mode , median 6 marks, probability 10marks, cunstruction 20marks, road safety 20 marks.
  • 4 answers

Raunak _ Pandey ?? 6 years, 11 months ago

Yeh class 10 ka hi question hai ! Par language thori unclear hai

Aradhana Singh 6 years, 11 months ago

Kis class main ho app

Aradhana Singh 6 years, 11 months ago

Bhai ....

Shreyas S 6 years, 11 months ago

in ATO &BTO TO = TO (common side) angle OBT = angle OAT (=90°) OA = OB (radii) ATO congruent to BTO [SAS] ​ angle ATO = angle BTO = 30° ​
  • 2 answers

Gogul Krishnan 6 years, 11 months ago

X^2-( alpha + beta)x+(alpha×beta) X^2-(6+root2)x+5-root2

Mayank Gorana 6 years, 11 months ago

I cn not answer in this phone because in my board alpha and bita are not there
  • 1 answers

Sia ? 6 years, 6 months ago


TSA of the article = 2{tex}\pi{/tex}rh + 2(2{tex}\pi{/tex}r2)
= 2{tex}\pi{/tex} (7)(20) + 2[2{tex}\pi{/tex} (7)2]
= 280{tex}\pi{/tex} + 98{tex}\pi{/tex}
= 378{tex}\pi{/tex}
= 378{tex}\times{/tex} {tex}\frac {22}7{/tex}
=  1188 cm 2

  • 2 answers

Sapna Jain 6 years, 11 months ago

Csa or tsa

Aryan Saini 6 years, 11 months ago

Good
  • 6 answers

J.R.Priya Dharshini 6 years, 11 months ago

Pls send me this ans.

J.R.Priya Dharshini 6 years, 11 months ago

Galthi no fastly u send

J.R.Priya Dharshini 6 years, 11 months ago

Graph aoor area booth chahiya. Ps galthi send karo

Riya Trivedi 6 years, 11 months ago

Aapko graph chahiye ya triangle ka area

J.R.Priya Dharshini 6 years, 11 months ago

Pls any one do and send fast

Sapna Jain 6 years, 11 months ago

Graph ispe nhi bnte
  • 1 answers

Sia ? 6 years, 6 months ago

Since {tex}(5x+2), (4x-1)\ and\ (x+2){/tex} are in AP, we have 
{tex}(4x-1)-(5x+2)=(x+2)-(4x-1){/tex}
{tex}\Rightarrow{/tex} {tex}4x-1-5x-2=x+2-4x+1{/tex}
{tex}\Rightarrow{/tex} {tex}-x-3=-3x+3{/tex}
{tex}\Rightarrow{/tex} 2x = 6
{tex}\Rightarrow{/tex} x = 3.

  • 1 answers

Sia ? 6 years, 6 months ago

 
Let height of tower = h m
Let distance {tex}BC = x \ m{/tex}
In {tex}\Delta ABC{/tex}
{tex}\tan {63^o} = \frac{{AB}}{{BC}}{/tex}
{tex} \Rightarrow 1.9626 = \frac{h}{x}{/tex}
{tex} \Rightarrow x = \frac{h}{{1.9626}}{/tex}
{tex} \Rightarrow x = 0.5095h{/tex} ...(i)
In {tex}\Delta ABD{/tex}
{tex}tan32^\circ= \frac{h}{{100 + x}}{/tex}
{tex}\Rightarrow 0.6248= \frac{h}{{100 + x}}{/tex}
{tex} \Rightarrow h = 62.48 + 0.6248x{/tex}
{tex} \Rightarrow h = 62.48 + 0.6248 \times 0.5059h{/tex}
{tex} \Rightarrow 0.6817h = 62.48{/tex}
{tex} \Rightarrow h = \frac{{62.48}}{{0.6817}} = 91.65m{/tex}
Put value of h in Eq(i) , we get 
{tex}x = 0.5095 \times 91.65 = 46.69m{/tex}
{tex}\therefore{/tex} Height of tower = 91.65 m
Distance of first position from tower {tex}= 100 + x{/tex}
{tex}= 100 + 46.69 \\ = 146.69 m{/tex}

  • 6 answers

Sapna Jain 6 years, 11 months ago

6

Sapna Jain 6 years, 11 months ago

This is a therorem of chapter t

Karann Deep 6 years, 11 months ago

Are you on innstagram?

Karann Deep 6 years, 11 months ago

Thank you so much shivani

Shivani Jangid 6 years, 11 months ago

Hope it'll help you out

Shivani Jangid 6 years, 11 months ago

Take a right angle triangle ABC then from B draw a pendicular to AC at d then similarise triangle ABC to t.adb and t. ABC again to t. Cdb then use their result this will be the pyathagorus theorem
  • 1 answers

Yogita Ingle 6 years, 11 months ago

The radius of circle = 8cm
diameter = 8 × 2 = 16cm

The diameter of circle = diagonal of square = 16cm
area of square = (diagonal)²/2 = 16²/2 = 256/2 = 128cm²

  • 4 answers

Yogita Ingle 6 years, 11 months ago

<div itemprop="text">

Sum of zeros = –5 + 4 = – 1,
Product of zeros = – 5 × 4 = – 20

Required polynomial = x2 + x – 20

</div>

Somil Rathore 6 years, 11 months ago

Polynomial will be (x square + x - 20)

Sapna Jain 6 years, 11 months ago

Firstle we find sum and product of zeroes and then we put this in xsquare-(alpha+beeta)x+alpha beeta

Puja Sahoo 6 years, 11 months ago

The equation is (x square +x -20)
  • 1 answers

Sia ? 6 years, 6 months ago

Given, acos{tex} \theta{/tex} - b sin{tex} \theta{/tex} = c
Squaring on both sides
(a cos{tex} \theta{/tex} - b sin{tex} \theta{/tex})2 =  c2
By Adding (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2 on both sides, we get 
(a cos{tex} \theta{/tex} - b sin{tex} \theta{/tex})2 + (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2 =c2 + (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2
(a2cos2{tex} \theta{/tex} + b2sin2{tex} \theta{/tex} - 2ab sin{tex} \theta{/tex} cos{tex} \theta{/tex}) + (a2sin2{tex} \theta{/tex} + b2cos2{tex} \theta{/tex} + 2ab sin{tex} \theta{/tex} cos{tex} \theta{/tex}) =c2 + (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2
a2(cos2{tex} \theta{/tex} + sin2{tex} \theta{/tex}) + b2(sin2{tex} \theta{/tex} + cos2{tex} \theta{/tex})=c2 + (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2
a2 + b = c2 + (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2
{tex} \Rightarrow{/tex} (a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex})2 = a2 + b2 - c2
{tex} \Rightarrow{/tex} a sin{tex} \theta{/tex} + b cos{tex} \theta{/tex} = {tex} \pm \sqrt { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } }{/tex}

  • 5 answers

Muskan Ojha 6 years, 11 months ago

I m from uttarakhand

Muskan Ojha 6 years, 11 months ago

May I have ur intro pls

Rishabh Jain 6 years, 11 months ago

Aap kaha se ho

Muskan Ojha 6 years, 11 months ago

Hi

Rishabh Jain 6 years, 11 months ago

Hello
  • 6 answers

Sapna Jain 6 years, 11 months ago

L*b

Karann Deep 6 years, 11 months ago

Bhai kitna pdhte ho aap! Aapko yeh bhi nahi pta

Madhu Singh 6 years, 11 months ago

Length × breadth

Lanson Dsouza 6 years, 11 months ago

Length×breadth

Mahak Yadav 6 years, 11 months ago

Area of rectangle is length ×breath

Harshil Chhajer 6 years, 11 months ago

Lenght × breadth
  • 1 answers

Shivani Jangid 6 years, 11 months ago

We need to find volume of liquid filled.so for this volume of 16 spheres should be subtrated from volume of rectangular box.
  • 1 answers

Harshika Saxena 6 years, 11 months ago

By Pythagoras theorem , AD = 10.25 . Then by the theorem , radius perpendicular to chord divides the chord in two equal parts . AD=AP , THEN AP = 20.5.......??
  • 7 answers

Sapna Jain 6 years, 11 months ago

1

Shivani Jangid 6 years, 11 months ago

It'll be 1

Harshika Saxena 6 years, 11 months ago

Utu It will 1

Puja Sahoo 6 years, 11 months ago

Distance will be 1...

Riya Trivedi 6 years, 11 months ago

Distance is 1

Humera Patel 6 years, 11 months ago

O

Rishabh Jain 6 years, 11 months ago

Distance = 1
  • 7 answers

Sapna Jain 6 years, 11 months ago

It is very easy

Riya Trivedi 6 years, 11 months ago

Clear ho gya

Rishabh Jain 6 years, 11 months ago

First find a, b and c then the value of a,b and c in quadratic formula. - b ± √b²-4ac/2a

Riya Trivedi 6 years, 11 months ago

Plzz give ur solution Rishabh ji

Rishabh Jain 6 years, 11 months ago

This equation is solve by quadratic formula

Rishabh Jain 6 years, 11 months ago

X = 7 ± √61/ 2

Riya Trivedi 6 years, 11 months ago

Check your question
  • 1 answers

Riya Trivedi 6 years, 11 months ago

X is -1
  • 3 answers

Riya Trivedi 6 years, 11 months ago

I am right or wrong?

Riya Trivedi 6 years, 11 months ago

Here the value of x and y are 2 and -1 respectively

Shivam The Galaxy 6 years, 11 months ago

The numbers are :- 45 and 27 Lets find their HCF BY Euclid's division Lemma :- a = bq + r 45 = 27 x 1 + 18 27 = 18 x 1 + 9 18 = 9 x 2 + 0 HCF = d = 9 Given:- d = 27x+45y 9 = 27x + 45y 9 = 27 - 18 x 1 18 = 45 - 27 x 1 Therefore , 9 = 27 - [ 45 x 27 x 1 ] x 1 = 27 x 2 - 45 9 = 27 x 2 + 45 x [ -1 ] x = 2 y = -1
  • 1 answers

Shivani Jangid 6 years, 11 months ago

First clarify the question that what you want to identify cost of a bucket or cost of 10 buckets.
  • 2 answers

Shivam The Galaxy 6 years, 11 months ago

Write ur question properly.

Puja Sahoo 6 years, 11 months ago

Complete your question
  • 2 answers

Shivam The Galaxy 6 years, 11 months ago

Wrong questions written.

Muskan Ojha 6 years, 11 months ago

Vernacular Press Act, in British India, law enacted in 1878 to curtail the freedom of the Indian-language (i.e., non-English) press. ... However, the resentment it produced among Indians became one of the catalysts giving rise to India's growing independence movement.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App