No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Suyog Bhandari 6 years, 11 months ago

Answer with whole process

Suyog Bhandari 6 years, 11 months ago

Sulution not answer

Yadish Bansal 6 years, 11 months ago

1/3
  • 5 answers

Yaar 6 years, 11 months ago

Learn the identities, and if don't remember identities than just change the function, like sin into cosec, cos into sec and tan into cot

V.Uthaya Kumar 6 years, 11 months ago

Try to change the identity into sin or cos

Hello Hello 6 years, 11 months ago

I think that there are no trics....just remember the concepts.......hope it will help u out...????

Yadish Bansal 6 years, 11 months ago

There are no tricks just learn the formulas

Ayush Singh 6 years, 11 months ago

No only learn formula
  • 1 answers

Ayush Singh 6 years, 11 months ago

Jo number ya vareable same ho usko common lata ha
  • 1 answers

Yadish Bansal 6 years, 11 months ago

7
  • 1 answers

V.Uthaya Kumar 6 years, 11 months ago

1and 1 only
  • 1 answers

Sia ? 6 years, 6 months ago

  

  • 2 answers

Divya Keshav 6 years, 11 months ago

thats not possible .sguare of 4 isnt equal to sum of square of 2 and 3

Maithili Bompilwar 6 years, 11 months ago

This is not possible because it is not phythagorian triplet Means sq.of small two digits is not equal to yhe sq.of large digit. i.e Sq.of2+sq.of3=13 Sq.of4=16 Which is not equal.
  • 1 answers

Rishabh Jain 6 years, 11 months ago

The value of cosec p = y² + 1/y² - 1.
  • 1 answers

Sia ? 6 years, 6 months ago

Let a1 and a2 be the first terms and d1 and d2 be the common difference of the two APs respectively.
Let Sn and S'n be the sums of the first n terms of the two APs and Tn and T'n be their nth terms respectively.
Then, {tex}\frac { S _ { n } } { S _ { n } ^ { \prime } } = \frac { 7 n + 1 } { 4 n + 27 } \Rightarrow \frac { \frac { n } { 2 } \left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \right] } { \frac { n } { 2 } \left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \right] } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
{tex}\Rightarrow \frac { 2 a _ { 1 } + ( n - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( n - 1 ) d _ { 2 } } = \frac { 7 n + 1 } { 4 n + 27 }{/tex} ........(i)
To find the ratio of mth terms, we replace n by (2m -1) in the above expression.
Replacing n by (2 {tex}\times{/tex} 9 -1), i.e., 17 on both sides in (i), we get
{tex}\frac { 2 a _ { 1 } + ( 17 - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( 17 - 1 ) d _ { 2 } } = \frac { 7 \times 17 + 1 } { 4 \times 17 + 27 } \Rightarrow \frac { 2 a _ { 1 } + 16 d _ { 1 } } { 2 a _ { 2 } + 16 d _ { 2 } } = \frac { 120 } { 95 }{/tex}
{tex}\Rightarrow \frac { a _ { 1 } + 8 d _ { 1 } } { a _ { 2 } + 8 d _ { 2 } } = \frac { 24 } { 19 }{/tex}
{tex}\Rightarrow \frac { a _ { 1 } + ( 9 - 1 ) d _ { 1 } } { a _ { 2 } + ( 9 - 1 ) d _ { 2 } } = \frac { 24 } { 19 }{/tex}
{tex}\Rightarrow \frac { a _ { 1 } + ( 9 - 1 ) d _ { 1 } } { a _ { 2 } + ( 9 - 1 ) d _ { 2 } } = \frac { 24 } { 19 }{/tex}
{tex}\Rightarrow \frac { T _ { 9 } } { T _ { 9 } ^ { \prime } } = \frac { 24 } { 19 }{/tex}
{tex}\therefore{/tex} required ratio = 24:19.

  • 6 answers

Abhishek Sahu 6 years, 11 months ago

yes, we understand all maths but we have to do more and more practice.

Amisha Sharma ? 6 years, 11 months ago

Anyone online

Amisha Sharma ? 6 years, 11 months ago

Same here i too like maths

@Kumu...#Vk... ?? 6 years, 11 months ago

No maths is not boring..... It is an interesting subject...... I like maths...... ??

Riya ? 6 years, 11 months ago

Because it refresh and do exercise of our brain in a boring manner.

Rishabh Jain 6 years, 11 months ago

Maths not a boring subject but it is hard when we do not practice
  • 2 answers

Ansh Nanesha 6 years, 11 months ago

By adding you asw

Gayatri Gaikwad 6 years, 11 months ago

By prime factorisation method
  • 3 answers

Aarushi Yadav 6 years, 11 months ago

Thanks

Ram Kushwah 6 years, 11 months ago

Let the two odd positive no. be x = 2k + 1 and y = 2p + 1

Hence, x2 + y2 = (2k + 1)2 +(2p + 1)2

                         = 4k2 + 4k + 1  + 4p2 + 4p + 1

                         = 4k2 + 4p2 + 4k + 4p + 2

                         = 4 (k2 + p2 + k + p) + 2 

clearly, notice that the sum of square is even the no. is not divisible by 4

hence, if x and y are odd positive integer, then x2 + y2 is even but not divisible by four

Ansh Nanesha 6 years, 11 months ago

Shut up re
  • 2 answers

Ram Kushwah 6 years, 11 months ago

Roots of px2-5x+p=0 are equal 

if (-5)2=4p(p)

4p2=25

p2=25/4 

p=5/2

Rishabh Jain 6 years, 11 months ago

The value of p is 5/2.
  • 2 answers

Yashomani Maurya 6 years, 11 months ago

Yes it is. A composite number is a one which has at least 1 factor other than 1 and itself. Since the given number,i.e.,13(7x11+1+2) is divisible by 13,hence it is a composite number(by definition). Hope it help you. #THANKS!

Riya ? 6 years, 11 months ago

Yes it is a composite number because it is product of primes. As 7×11×13+13+13×2=13(7×11×1+1+1×2) =13(77+1+2)=13(80)=13×2×2×2×2×5
  • 2 answers

Ram Kushwah 6 years, 11 months ago

by pythagoras theorem

base2 + heigh2=hypo2

divide by hypo2

base2/hypo2 + height2/hypo2=hypo2/hypo2

sin2x+cos2x=1

 

Raushan Kumar 6 years, 11 months ago

By relate trignometery with Pythagoras
  • 2 answers

Ram Kushwah 6 years, 11 months ago

LCM*HCF= A*B

SO LCM=18*24/6=72

Rishabh Jain 6 years, 11 months ago

LCM is equal to the 72
  • 1 answers

Ram Kushwah 6 years, 11 months ago

IF NEW TRIANGLE IS  PQR THEN SIDES ARE

6*3/5,8*3/5,9*3/5

OR  3.6 cm,4.8 cm and 5.4 cm so make the new triangle with these sides

  • 1 answers

Sia ? 6 years, 6 months ago

 
Given: PQ is a diameter of a circle with centre O.
The lines AB and CD are the tangents at P and Q respectively.
To Prove: AB {tex}\parallel{/tex} CD
Proof: Since AB is a tangent to the circle at P and OP is the radius through the point of contact.
{tex}\therefore{/tex} {tex}\angle{/tex}OPA = 90o ........ (i)
[The tangent at any point of a circle is {tex}\perp{/tex} to the radius through the point of contact]
{tex}\because{/tex} CD is a tangent to the circle at Q and OQ is the radius through the point of contact.
{tex}\therefore{/tex} {tex}\angle{/tex}OQD = 90o ........ (ii)
[The tangent at any point of a circle is  {tex}\perp{/tex} to the radius through the point of contact]
From eq. (i) and (ii), {tex}\angle{/tex}OPA = {tex}\angle{/tex}OQD
But these form a pair of equal alternate angles also,
{tex}\therefore{/tex} AB {tex}\parallel{/tex} CD

  • 3 answers

Ayushi Singh 6 years, 11 months ago

Question?

Cutie Pie ? 6 years, 11 months ago

What's your question Nikhil

Puja Sahoo 6 years, 11 months ago

Please check the question....
  • 3 answers

Cutie Pie ? 6 years, 11 months ago

The 18th term will be equal to 0, Sourabh

Rishabh Jain 6 years, 11 months ago

Because 7a+42d = 11a+110d 4a+68d = 0 a+17d = 0. ( 18 th term = a+17d

Rishabh Jain 6 years, 11 months ago

18th term is equal to 0
  • 1 answers

Sia ? 6 years, 6 months ago

Let n be a given positive odd integer.
On dividing n by 6, let m be the quotient and r be the remainder.
Then, by Euclid's division lemma, we have
{tex}n = 6m + r{/tex}, where {tex}0 \leq r < 6{/tex}
{tex}\Rightarrow{/tex} {tex}n = 6m + r{/tex}, where {tex}r = 0, 1, 2, 3, 4, 5{/tex}
{tex}\Rightarrow{/tex} {tex}n = 6m\ or\ (6m + 1){/tex} {tex}or\ (6m + 2)\ or\ (6m + 3)\ or\ (6m + 4)\ or\ (6m + 5).{/tex}
But, {tex}n = 6m, (6m + 2), (6m + 4){/tex} give even values of n.
Thus, when n is odd, it is of the form {tex}(6m + 1)\ or\ (6m + 3)\ or\ (6m + 5){/tex} for some integer m.

  • 1 answers

Drashti Vaish 6 years, 11 months ago

You can see the solutions by this app only..
  • 1 answers

Mutyala Gayathri 6 years, 11 months ago

I have that formulas pic how can i send u
  • 2 answers

Drashti Vaish 6 years, 11 months ago

You can see by this app only

Puja Sahoo 6 years, 11 months ago

Number system - 06, Algebra - 20, Coordinate geometry - 06, Geometry - 15, Trigonometry - 12, Mensuration - 10, Statistics and probability - 11 hope it will help you ☺☺☺☺☺
  • 4 answers

Harshita Sharma 6 years, 11 months ago

Hey I got the answer it can be solved by sec square - tan square theta

Harshita Sharma 6 years, 11 months ago

Hi , sorry I am not getting your point.

Lavkush Kumar 6 years, 11 months ago

Hi

Lavkush Kumar 6 years, 11 months ago

P square +1/p square -1 and -1
  • 1 answers

Hariesh Lokesh 6 years, 11 months ago

4/x-3=5/2x+3 4/x-5/2x=6 8x-5x=12x² 3x=12x² 3=12x²/x 3=12x X=3/12 X=1/4

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App