No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Anshika Pal???? 6 years, 11 months ago

Minus plus likha he dude jitna ho skta he utna equation likh ke dona please smjh nhi aarha he
  • 2 answers

Chētnà Pandey✌️ 6 years, 11 months ago

For more detail open your NCERT book

Chētnà Pandey✌️ 6 years, 11 months ago

The ratio of the areas of two similar triangles is equal to the squares of there corresponding sides......
  • 1 answers

Gaurav Seth 6 years, 11 months ago

Let us three consecutive  integers be, x, x + 1 and x + 2 respectively.

[• Whenever a number is divided by 3 the remainder obtained is either 0 or 1 or 2. ( it's proved )]

Let x = 3p ...................................(i)
where p belongs to an integer and does not equal to zero ( 0 ).

=> x is divisible by 3.

If x = 3p + 1 
where p belongs to an integer and does not equal to zero ( 0 ).

then x + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) 
which is divisible by 3.

If x = 3p + 2
where p belongs to an integer and does not equal to zero ( 0 ).

then x + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) 
which is divisible by 3.

So that x, x + 1 and x + 2 is always divisible by 3.
=>  x (x + 1) (x + 2) is divisible by 3.

Similarly, whenever a number is divided 2 we will get the remainder is 0 or 1.

Let x = 2q
where q belongs to an integer and does not equal to zero ( 0 ).

=> x is divisible by 2

If x = 2q + 1 
where q belongs to an integer and does not equal to zero ( 0 ).

then x + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) 
which is divisible by 2.
 
So that x, x + 1 and x + 2 is always divisible by 2.
⇒ x (x + 1) (x + 2) is divisible by 2.


Since x (x + 1) (x + 2) is divisible by 2 and 3.
 
∴ x (x + 1) (x + 2) is divisible by 6.

  • 6 answers

Ram Kushwah 6 years, 11 months ago

963=657×1+306

657=306×2+45

306=45×6 + 36

45=36×1+9

36=9×4+0

So HCF=9

Hence 657x +963x(-15)=9

657x-14445=9

657x=14445+9

657x=14454

x=22 ans

 

Lionel Messi⚽️ 6 years, 11 months ago

Hindi ...

Anshika Pal 6 years, 11 months ago

Mene to direct solve kardia bina hcf nikale and finally i got right answer 108 ??

Anshika Pal 6 years, 11 months ago

I think 108 or 1/108 i m not sure check it and tell me the answer if u get that ok

Raunak Pandey ?? 6 years, 11 months ago

Samaj me aa gaya ??

Raunak Pandey ?? 6 years, 11 months ago

Pehle HCF nikalo phir usko ess equation (. 657x+963x(-15)) ke equal put kar do and you will get a linear equation then solve for x
  • 2 answers

Sinchana Sheshadri 6 years, 11 months ago

a=105 d=7 l=994 An=a+(n-1)d 994=105 + ( n-1)7 (-105) 889=(n-1)7 (÷7) 127=n-1 ( +1) 128=n n=128 There are 128 there digit numbers which are divisible by 7.

Divyanshi Tongariya 6 years, 11 months ago

a=105 d=7 An=994 An=a+(n-1)d 994=105+(n-1)7 n=896
  • 1 answers

Ram Kushwah 6 years, 11 months ago

x​​​​​​2​​​​​+k(4x+k-1)+2=0

X​​​​​​2+4kx+k​​​​​​2​​​​​-k+2=0

If roots are equal then

b​​​​​​2=4ac

Here a=1,b=4k c=k​​​​​​2​​​​​-k+2

So (4k)^2=4×1×(k^2-k+2)

4k^2=k^2-k+2

3k^2+k-2=0

3k^2+3k-2k-2=0

3k(k+1)-2(k+1)=0

(3k-2)(k+1)=0

k=2/3, .- 1

  • 1 answers

Ram Kushwah 6 years, 11 months ago

Here A=(1+a^2)b^2,B=2abc C=c^2-m^2

If roots are equal then

B^2=4AC

4a^2b^2c^2=4(1+a^2)b^2(c^2-m^2)

a2b2c2=(b2+a2b2)(c2-m2)

=b2c2-b2m2+a2b2c2-m2a2b2

Or b2c2=b2m2+m2a2b2

b2C2=b2m2(1+a2)

c2=m2(1+a2) proved

Sorry I am facing problem in writing powers

  • 2 answers

Ritika Bisht 6 years, 11 months ago

1/3 πh(r1×r2+r1r2)

Ritika Bisht 6 years, 11 months ago

Volume puch rehe ho frustum ka
  • 2 answers

Priyanshu Manas 6 years, 11 months ago

If the radius of sphere is 'r' then the sides of cube will be r(4/3π)^1/3

Dad'S Angel? 6 years, 11 months ago

Question thik se likhye, i can't understand.
  • 2 answers

Prahlad Pal 6 years, 11 months ago

It is not possible of having a right triangle ABC if AB=12 BC=17 and AC=17

Satyam Shivam 6 years, 11 months ago

102 sq units
  • 2 answers

Gaurav Verma 6 years, 11 months ago

A no which is divisible by the numbers other than 1 or itself is composite no.

Anushka Jugran ? 6 years, 11 months ago

No. Having more than two factors
  • 2 answers

@ Aashu 6 years, 11 months ago

Plz question ko acche se type kare .... Mai samji nahi ?

Yameen Malik 6 years, 11 months ago

(-2+4)(2-8)(x+y)=2+4
  • 3 answers

Gaurav Seth 6 years, 11 months ago

Mid term is nth term and (n+1)th term 
=>nth term is 2n and (n+1)th term is 2(n+1)
median = (2n+2(n+1))/2=2n+1

Honey ☺☺☺ 6 years, 11 months ago

1

Tumpi Tiya 6 years, 11 months ago

Find the value of Cot18/ tan72
3a2
  • 2 answers

@ Aashu 6 years, 11 months ago

Plz complete ur question ...

Chētnà Pandey✌️ 6 years, 11 months ago

3×a×a=3a2
  • 1 answers

Pihu Saini 6 years, 11 months ago

Wts ur ques?
  • 6 answers

Honey ☺☺☺ 6 years, 11 months ago

Isme practice karne jaisa kuch ni hain

Puja Sahoo? 6 years, 11 months ago

Right answer.....

Piyush Gautam.. 6 years, 11 months ago

Hmm

Chētnà Pandey✌️ 6 years, 11 months ago

I don't know mai es chapter ki practice karungi

Piyush Gautam.. 6 years, 11 months ago

Ya hi..

D.J Alok 6 years, 11 months ago

Its 2/7
  • 1 answers

Sia ? 6 years, 6 months ago


P is midpoint of QR
or, {tex}\frac { a } { 3 } = \frac { - 5 + ( - 1 ) } { 2 }{/tex}
or,  {tex}\frac { a } { 3 } = \frac { - 6 } { 2 }{/tex}
or, a = -9

  • 1 answers

Gaurav Seth 6 years, 11 months ago

The tangents can be constructed in the following manner:

Step 1

Draw a circle of radius 5 cm and with centre as O.

Step 2

Take a point A on the circumference of the circle and join OA. Draw a perpendicular to OA at point A.

Step 3

Draw a radius OB, making an angle of 120° (180° − 60°) with OA.

Step 4

Draw a perpendicular to OB at point B. Let both the perpendiculars intersect at point P. PA and PB are the required tangents at an angle of 60°.

Justification

The construction can be justified by proving that ∠APB = 60°

By our construction

∠OAP = 90°

∠OBP = 90°

And ∠AOB = 120°

We know that the sum of all interior angles of a quadrilateral = 360°

∠OAP + ∠AOB + ∠OBP + ∠APB = 360°

90° + 120° + 90° + ∠APB = 360°

∠APB = 60°

This justifies the construction.

  • 1 answers

Gaurav Seth 6 years, 11 months ago

TSA = 462 cm2 2  = 2πrh + 2πr2

LSA = 1/3 of TSA= 1/3 462 = 154 = 2πrh

462 = 154 + 2πr2

462 = 154 + 2 x 22/7 x r2

462  - 154 = 2 x 22/ 7 x r2

308 x7 =r2

2 x 22  It's upon 2 into 22

therefore r2 = 49

r = 7

LSA = 2

TSA = 462 cm2 2  = 2πrh + 2πr2

CSA = 1/3 of TSA= 1/3 462 = 154 = 2πrh

462 = 154 + 2πr2

462 = 154 + 2 x 22/7 x r2

462  - 154 = 2 x 22/ 7 x r2

308 x7 =r2

2 x 22  It's upon 2 into 22

therefore r2 = 49

r = 7 cm

LSA = 2πrh 

154 = 2 x 22/7 x 7 x h

h = 3.5 cm

volume = πr2h

  22/7 x 7 x 7 x 3.5

  = 539 cm3

  • 1 answers

Sia ? 6 years, 6 months ago

The given system of equations are:
(a - b)x + (a + b)y = 2a2 - 2b2
So, (a - b)x + (a + b)y - 2a2 - 2b2 = 0
 (a - b)x + (a + b)y - 2(a2 - b2) = 0 ........(i)
And (a + b)(x + y) = 4ab
So, (a +b)x + (a + b)y - 4ab = 0 ..........(ii)
The given system of equation is in the form of
a1x + b1y - c1 = 0
and a2x + b2y - c2 = 0
Compare (i) and (ii) , we get
a1 = a - b, b1 = a + b, c1 = -2(a2 + b2)
a2 = a + b, b2 = a + b, c2 = -4ab
By cross-multiplication method
{tex}\frac{x}{{2(a + b)({a^2} - {b^2} + 2ab)}}{/tex} {tex} = \frac{{ - y}}{{2(a - b)({a^2} + {b^2})}}{/tex} {tex} = \frac{1}{{ - 2b(a + b)}}{/tex}
Now, {tex}\frac{x}{{2(a + b)({a^2} - {b^2} + 2ab)}} = \frac{1}{{ - 2b(a + b)}}{/tex} {tex}{/tex}

{tex}⇒ x = \frac{{2ab - {a^2} + {b^2}}}{b}{/tex}
And, {tex}\frac{{ - y}}{{2(a - b)({a^2} + {b^2})}} = \frac{1}{{ - 2b(a + b)}} {/tex} 
{tex}⇒ y = \frac{{(a - b)({a^2} - {b^2})}}{{b(a + b)}}{/tex}
The solution of the system of equations are {tex}\frac{{2ab - {a^2} + {b^2}}}{b}{/tex} and {tex}\frac{{(a - b)({a^2} - {b^2})}}{{b(a + b)}}{/tex} respectively.

  • 1 answers

Sia ? 6 years, 6 months ago

If any number ends with the digit 0, it should be divisible by 10 or in other words, it will also be divisible by 2 and 5 as 10 = 2 × 5
Prime factorisation of 6n = (2 ×3)n
It can be observed that 5 is not in the prime factorisation of 6n.
Hence, for any value of n, 6n will not be divisible by 5.
Therefore, 6n cannot end with the digit 0 for any natural number n.

  • 4 answers

Yaar 5 years, 8 months ago

Mansi or atul. Yaar yhan pe sirf aap dona ka hi dil tuta hua h. So please is topic ko chod do na

Daksh Sharma 6 years, 11 months ago

Koi nhi kapil ji...??

Daksh Sharma 6 years, 11 months ago

Yrr bs sb ka dil tut rkha h to sb feling share kr rhe h bs...

Raunak Pandey ?? 6 years, 11 months ago

Yaar kya ho gaya hao sabko ????? Sab aise depressing shayari kyo post kar rahe ho
  • 1 answers

Sia ? 6 years, 6 months ago

Let a, and A be the first terms and d and D be the common difference of two A.Ps
Then, according to the question,
{tex}\frac { S _ { n } } { S _ { n } ^ { \prime } } = \frac { \frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } { \frac { n } { 2 } [ 2 A + ( n - 1 ) D ] } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
or, {tex}\frac { 2 a + ( n - 1 ) d } { 2 A + ( n - 1 ) D } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}

or,{tex}\frac { a + \left( \frac { n - 1 } { 2 } \right) d } { A + \left( \frac { n - 1 } { 2 } \right) D } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
Putting, {tex}\frac { n - 1 } { 2 } = m - 1{/tex}
{tex}n-1 = 2m - 2{/tex}
{tex}n= 2m - 2 + 1{/tex}
or, {tex}n = 2m - 1{/tex}
{tex}\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \frac { 7 ( 2 m - 1 ) + 1 } { 4 ( 2 m - 1 ) + 27 }{/tex}
{tex}\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \frac { 14 m - 7 + 1 } { 8 m - 4 + 27 }{/tex}
{tex}\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \frac { 14 m - 6 } { 8 m + 23 }{/tex}
Hence, {tex}\frac { a _ { m } } { A _ { m } } = \frac { 14 m - 6 } { 8 m + 23 }{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App